Главная » Бесплатные рефераты » Бесплатные рефераты по концепции современного естествознания »
Тема: Ген и его свойства. Генетика и практика
Раздел: Бесплатные рефераты по концепции современного естествознания
Тип: Контрольная работа | Размер: 23.29K | Скачано: 320 | Добавлен 30.10.09 в 10:07 | Рейтинг: 0 | Еще Контрольные работы
Вуз: ВЗФЭИ
Год и город: Владимир 2007
Содержание
Введение 3
1. Дайте определение понятия «ген», охарактеризуйте его основные признаки и определите сущность генетики как науки 4
2. Охарактеризуйте генетику как науку 7
3. Покажите теоретическое и практическое значение современной генетики 12
Заключение 18
Список использованной литературы 19
Введение
Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами. Однако лишь в начале XX в. ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе «задатки» того огромного множества признаков, из которых слагается каждый отдельный организм. Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы современной генетики. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представленные у особей парами, остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары. В 1909 г. датский ботаник Иогансен назвал эти единицы “гедам”, а в 1912 г. американский генетик Морган показал, что они находятся в хромосомах. С тех пор генетика достигла больших успехов в объяснении природы наследственности и на уровне организма, и на уровне гена.
1. Дайте определение понятия «ген», охарактеризуйте его основные признаки и определите сущность генетики как науки.
Элементарными дискретными единицами наследственности и изменчивости являются гены. Ген – это участок молекулы ДНК, определяющий последовательность аминокислот конкретного полипептида. По своему уровню ген – внутриклеточная молекулярная структура. По химическому составу – это нуклеиновые кислоты, в составе которых основную роль играют азот и фосфор. Гены располагаются, как правило, в ядрах клеток. Они имеются в каждой клетке, и поэтому их общее количество в крупных организмах может достигать многих миллиардов. По своему значению гены – своего рода «мозговой центр» клеток и, следовательно, всего организма.
Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому. Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена: а) ген как единица рекомбинации. На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению:
а) ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;
б) ген как единица мутирования. В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию;
в) ген как единица функции. Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.
Гены находятся в определенных участках хромосом – локусах. Информация (набор генов) клеточного ядра представляет собой генотип. Совокупность генов гаплоидного набора хромосом получила название геном, а информация внеядерных ДНК – плазмон.
Функциональные возможности генетического материала (способность сохраняться и воспроизводиться при смене клеточных поколений, реализовываться в онтогенезе и в ряде случаев изменяться) связаны с протеканием четырех генетических процессов – репликации и репарации ДНК, биосинтеза белка и генетической рекомбинации.
Перенос генетической информации в клетках от ДНК через различные виды РНК к полипептидам и белкам называется экспрессией (проявлением) генов. Образующиеся при биосинтезе белка полипептидные цепи определяют признаки клеток, формируя белковые структуры или управляя процессами обмена веществ в качестве ферментов.
Репликация, или идентичное удвоение, ДНК происходит перед каждым нормально протекающим делением у эукариот, перед каждым делением прокариотических клеток и размножением ДНК-вирусов. Репликация является необходимой предпосылкой для сохранения имеющейся наследственной информации в ряду последовательных поколений клеток и организмов.
Признаки клеток и организма – фенотип – обусловлены синтезируемыми специфическими структурными белками и ферментами, ответственными за определенные этапы обмена веществ. В результате из предшественников, поступающих в клетки из окружающей среды. Образуются конечные продукты. От которых зависит проявление специфических признаков, т.е. структурных и функциональных особенностей. Одним из первых этапов на пути формирования признаков являются транскрипция и трансляция.
Синтез РНК - копий по матрице одной из цепей того или иного полинуклеотидного участка молекулы ДНК называется транскрипцией. На ДНК – матрице образуются три вида РНК: информационная или матричная (мРНК), транспортная (тРНК) и рибосомная (рРНК).
Молекула мРНК образуется в результате транскрипции одного из генов. Процесс, посредством которого генетическая информация в виде последовательности нуклеотидов мРНК переводится в последовательность аминокислот в полипептиде, называют трансляцией. Различные типы РНК взаимодействуют в процессе трансляции на основе генетической информации, закодированной в молекулах ДНК и РНК.
Генетический код – принцип записи информации о последовательности аминокислот в полипептиде в виде последовательности нуклеотидов в молекулах РНК и ДНК.
Для осознания окружающего мира, любому индивидууму необходимо четко понимать природу оболочки энергии его сознания, которую приходится постоянно ощущать вокруг себя. Тот мир который отражает сознание имеет четкие правила и границы предусмотренные этим же сознанием. Для наиболее полноценного контакта, человек обязан следовать этим правилам и существуя в его рамках обмениваться информацией и заботится о себе подобных, в целях сохранения оболочки.
Преследуя эти цели, человеческий разум создает модель – так называемую науку, всего того, что напрямую связано с его потребностями. Для удовлетворения жажды самопознания и анализа эволюции, возникла наука – биология. Наука, обобщающая и исчерпывающе доказывающая человеческие догадки о самом себе. Но, определив конкретные рамки этой науки, людской разум продолжает идти дальше. Это мы в состоянии наблюдать ежедневно. Возникло желание не только познать себя, а еще и изменить себя, провести ускоренную эволюцию человеческого вида своими руками, в лабораторных условиях.
Для достижения данной цели ученые выявили предположительный ключ, т.е. место хранения всей биологической информации о живой оболочке индивидуума - гены. Отсюда появилось новое многообещающее течение в биологии – генетика
2. Охарактеризуйте генетику как науку
Генетика – наука, изучающая закономерности наследственности и изменчивости, а также биологические механизмы, их обеспечивающие.
Генетика является научной основой для разработки практических методов селекции, т.е. создания новых пород животных, видов растений, культур микроорганизмов с нужными человеку признаками.
Отцом генетики принято считать чешского монаха Грегора Менделя. Он был учителем физики и естествознания в обычной средней школе, а всё своё свободное время отдавал выращиванию растений в саду монастыря. Мендель занимался этим не из гастрономических интересов, а для изучения закономерностей наследования признаков. Опыты по гибридизации растений проводились и до Менделя, но никто из его предшественников не делал попыток как-то проанализировать свои результаты.
Мендель взял семена гороха с пурпурными цветками и семена сорта, у которого цветки были белые. Когда из них выросли растения и зацвели, он удалил из пурпурного цветка тычинки и перенёс на его пестик пыльцу белого цветка. Через положенное время образовались семена, которые Мендель следующей весной опять посадил на своём огороде. Вскоре взошли новые растения. Результат превзошёл все ожидания: растения оказались с пурпурными цветками, среди них не было ни одного белого. Мендель ни один раз повторял свои опыты, но результат был один и тот же. Итак, гибриды всегда приобретают один из родительских признаков.
Важнейший результат опытов Менделя: в гибридах, полученных от скрещивания растений с разными признаками, не происходит никакого растворения признаков, а один признак (более сильный, или, как назвал его Мендель, доминантный) подавляет другой (более слабый или рецессивный).
Но Мендель не остановился на достигнутом. Он взял и скрестил между собой пурпурные растения гороха, полученные в результате этого опыта. В результате из бутонов появились и пурпурные и белые цветки. Признак белой окраски, исчезнувшей после первого скрещивания, вновь проявил себя. Самым интересным было то, что растений с пурпурными цветками было ровно в 3 раза больше, чем с белыми.
Похожие результаты были получены ещё в четырёх опытах, и во всех случаях отношение доминантных и рецессивных признаков после второго скрещивания составляло в среднем 3:1.
Знания, которыми обладал Мендель, были ничтожны, но сделанные им выводы намного опережали свой век. Мендель высказал предположение, которое вскоре стало самым важным из открытых им законов. Он приходит к мысли, что половые клетки (гаметы) несут только по одному задатку каждого из признаков и чисты от других задатков этого же признака. Этот закон получил название закона чистоты гамет, который не потерял своего значения даже сейчас.
Но как часто бывает в науке, исследования, которые могли означать рождение нового направления в биологии, были забыты на несколько десятилетий. Настоящая история генетики началась в 1900 году, когда закономерности, обнаруженные ещё Менделем, были снова «открыты» учёными. Три ботаника, голландец Гуго Де Фриз, немец К. Корренс и австриец К. Чермак, занимались изучением закономерностей наследования признаков при скрещивании.
Де Фриз исследовал энотеру, мак и дурман и открыл закон расщепления признаков у гибридов. Корренс открыл тот же закон расщепления, но только на кукурузе, а Чермак - на горохе. Затем, учёные решили изучать мировую литературу по этим вопросам и натолкнулись на исследования Менделя. Оказалось, что ничего нового они не открыли, более того, выводы Менделя были глубже их собственных.
Слава Менделя распространилась моментально. Во всём мире сразу же нашлось множество последователей, которые повторили его опыт на различных объектах. В научном обиходе появился даже особый термин – «менделирующие признаки», - то есть признаки, подчиняющиеся законам Менделя.
Генетика как наука решает следующие задачи: изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и её материальные носители; анализирует способы передачи наследственной информации от одного поколения клеток и организмов к другому; выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на них условий среды обитания; изучает закономерности и механизмы изменчивости и её роль в эволюционном процессе; изыскивает способы исправления повреждённой генетической информации.
Для решения задач используются разные методы исследования.
1. Метод гибридологического анализа. Он позволяет выявлять закономерности наследования отдельных признаков при половом размножении организмов.
2. Цитогенетический метод позволяет изучать кариотип клеток организма и выявлять геномные и хромосомные мутации.
3. Генеалогический метод предполагает изучение родословных животных и человека и позволяет устанавливать тип наследования того или иного признака, зиготность организмов и вероятность проявления признаков в будущих поколениях.
4. Близнецовый метод основан на изучении проявления признаков у однояйцевых и двуяйцевых близнецов. Он позволяет выявить роль наследственности и внешней среды в формировании конкретных признаков.
5. Биохимические методы исследования основаны на изучении активности ферментов и химического состава клеток, которые определяются наследственностью.
6. Популяционно-статистический метод позволяет рассчитывать частоту встречаемости генов и генотипов в популяциях.
Практически неограниченными источниками генетической изменчивости служат два процесса, происходящие во время мейоза: 1. Реципрокный обмен генами между хромата-дамп гомологичных хромосом, который может происходить в профазе 1 мейоза. Он создает новые группы сцепления, т.е. служит важным источником генетической рекомбинации аллелей. 2. Ориентация пар гомологичных хромосом (бивалентов) в экваториальной плоскости веретена в метафазе I мейоза определяет направление, в котором каждый член пары будет перемещаться в анафазе I. Эта ориентация носит случайный характер. Во время метафазы II пары хроматид опять- таки ориентируется случайным образом, и этим определяется, к какому из двух противоположных полюсов направится та или иная хромосома во время анафазы II. Случайная ориентация и последующее независимое расхождение (сегрегация) хромосом делают возможным большое число различных хромосомных комбинаций в гаметах; число это можно подсчитать. Третий источник изменчивости при половом размножении - это то, что слияние мужских и женских гамет, приводящее к объединению двух гаплоидных наборов хромосом в диплоидном ядре зиготы, происходит совершенно случайным образом (во всяком случае, в теории); любая мужская гамета потенциально способна слиться с любой женской гаметой. Эти три источника генетической изменчивости и обеспечивают постоянную «перетасовку» генов, лежащую в основе происходящих все время генетических изменений. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего приспособлены к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции. Однако эти источники изменчивости не порождают крупных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Мутацией называют изменение количества или структуры ДНК данного организма. Мутация приводит к изменению генотипа, которое может быть унаследовано клетками, происходящими от мутант- ной клетки в результате митоза или мейоза. Мутирование может вызывать изменения каких-либо признаков в популяции. Мутации, возникшие в половых клетках, передаются следующим поколениям организмов, тогда как мутации в соматических клетках наследуются только дочерними клетками, образовавшимися путем митоза, и такие мутации называют соматическими. Мутации, возникающие в результате изменения числа или макроструктуры хромосом, известны под названием хромосомных мутаций или хромосомных аберраций (перестроек). Иногда хромосомы так сильно изменяются, что это можно увидеть под микроскопом. Но термин «мутация» используют главным образом для обозначения изменения структуры ДНК в одном докую, когда происходит так называемая генная, или точечная, мутация. Представление о мутации как о причине внезапного появления нового признака было впервые выдвинуто в 1901 г. голландским ботаником Гуго де Фризом, изучавшим наследственность у энотеры Oenothera lamarckiana. Спустя 9 лет Т. Морган начал изучать мутации у дрозофилы, и вскоре при участии генетиков всего мира у нее было идентифицировано более 500 мутаций.
Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных аберраций, можно объяснить только изменениями в структуре отдельных генов. Генная, или точечная (поскольку она относится к определенному генному локусу), мутация - результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре мРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах.
Вся история генетики – это величайший пример единства науки и практики. За последние годы были созданы и продолжают развиваться, совершенствоваться методы генетической инженерии и биотехнологии, позволяющие по-новому решать многие коренные задачи не только биологии и генетики, но и многих других наук и отраслей промышленности. И то, что прежде могло многим показаться фантастикой, становится теперь реальным, повседневным делом
3. Покажите теоретическое и практическое значение современной генетики
Удивительными открытиями в науке и грандиозным научно-техническим прогрессом ознаменовался XX век, однако научно-технический прогресс в настоящем виде имеет негативные стороны: исчерпание ископаемых ресурсов, загрязнение окружающей среды, исчезновение многих видов растений и животных, глобальное изменение климата, появление озоновых дыр над полюсами Земли и т.д. Ясно, что такой путь ведёт в тупик. Нужно принципиальное изменение вектора развития. Биотехнология может внести решающий вклад в решение глобальных проблем человечества.
Биотехнология - это использование живых организмов (или их составных частей) в практических целях. Когда говорят о современной биотехнологии, то подобное определение дополняют словами: на базе достижений молекулярной биологии. Если не сделать подобного добавления, то под определение "биотехнология" попадут и традиционное с/х, животноводство и многие отрасли пищевой промышленности, использующие микроорганизмы. Далее мы остановимся на одном из видов биотехнологии, а именно на генной инженерии, которая открывает совершенно новые пути в медицине химии, в производстве Энергии, новых материалов, в охране окружающей среды. Генная инженерия - это технология манипуляций с веществом наследственности - ДНК.
Сегодня учёные могут в пробирке разрезать молекулу ДНК в желательном месте, изолировать и очищать отдельные её фрагменты, синтезировать их из двух дезоксирибонуклеотидов, могут сшивать такие фрагменты. Результатом таких манипуляций являются "гибридные", или рекомбинантные молекулы ДНК, которых до этого не было в природе.
Годом рождения генной инженерии считается 1972 год, когда в лаборатории Пола Берга в США была получена в пробирке первая рекомбинантная реплицироваться, т.е. размножаться, в бактерии кишечной палочки E.сoli. Само появление генной инженерии стало возможным благодаря фундаментальным открытиям в молекулярной биологии.
В 60-е годы ученые расшифровали генетический код, т.е. установили, что каждая аминокислота в белке кодируется триплетом нуклеотидов в ДНК. Особенно важно, что генетический код универсален для всего живого мира. Это означает, что весь мир "разговаривает" на одном языке. Если передать в какую- либо клетку "чужеродную" ДНК, то информация, в ней закодированная, будет правильно воспринята клеткой реципиентом.
Далее было установлено, что существуют специальные последовательности ДНК, определяющие начало и окончание транскрипции, трансляции, репликации. Практически все эти системы, в первом приближении, безразличны к последовательностям ДНК, расположенным между данными сигналами. Надо сказать, что сами сигналы различаются в разных организмах. Из всего сказанного следует, что если взять некий структурный ген(например человека) и in vitro снабдить его сигналами, характерными для гена бактериальной клетки, то такая структура, помещённая в бактериальную клетку, будет способна к синтезу человеческого белка.
Одно из наиболее важных направлений генной инженерии - производство лекарств нового поколения, представляющих собой биологически активные белки человека. Следует напомнить, что в большинстве случаев белки человека (как и других животных) видоспецифичны, т.е. для лечения человека можно использовать только белки человека. Вследствие этого возникает проблема получения человеческих белков в нужных количествах.
Использование рекомбинантных белков человека - принципиально новая терапия. В не вводится ничего чужого. Действительно, если в нём не хватает инсулина или гормона роста, их добавляют (заместительная терапия). С вирусами организм сам борется с помощью интерферонов - человек просто помогает ему.
Значительные успехи достигнуты в генной инженерии растений. В основе этой техники лежат методы культивирования клеток и тканей растений в пробирке и возможность регенерации целого растения из отдельных клеток.
В генной инженерии растений есть свои проблемы. Одна из них состоит в том, что многие полезные свойства растений кодируются не одним, а многими генами. Это делает трудным или невозможным прямое генно-инженерное совершенствование свойств. Другое препятствие, которое постепенно преодолевается, - трудности культивирования и регенерации клеток в целое растение среди некоторых видов, например злаков. Лучшие результаты получены в том случае, когда перенос одного гена может привести к появлению у растения полезного свойства.
Несмотря на ограничения, получены впечатляющие результаты: созданы сорта хлопчатника, томатов, табака, риса, устойчивых к насекомым-вредителям, вирусам, грибковым заболеваниям. Пионер в области применения генно-инженерных растений в с/х - США. Здесь в 1996 году до 20% посевов хлопчатника произведено семенами, модифицированными методом генной инженерии.
Создание генно-инженерных (их сейчас называют трансгенными) животных имеет те же принципиальные трудности, что и создание трансгенных растений, а именно: множественность генов, определяющих хозяйственно ценные признаки. Тем не менее, есть быстро развивающаяся область, связанная с созданием трансгенных животных - продуцентов биологически активных белков.
В высших организмах конкретные гены кодируют производство белков в определенных тканях. Хотя все гены содержатся в каждой клетке, в специализированных клетках работают только некоторые из них, этим и определяется тканевая специфичность. Примером может служить производство белков молока (козеин, лактальбумин) в молочных железах. Есть возможность подставить нужный нам ген под регуляторные последовательности, например казеина, и получить чужеродный белок в составе молока. Важно при этом, что животное чувствует себя нормально, так как чужой ген работает только в процессе лактации.
В мире уже существуют сотни трансгенных овец и коз, продуцирующих в молоке от десятков миллиграмм до нескольких грамм биологически активных белков человека в 1л молока. Такой метод производства экономически выгоден и экологически чище, хотя и требует от ученых больших усилий и времени при создании трансгенных животных по сравнению с созданием генно-инженерных микроорганизмов.
С молоком трансгенных животных можно получать не только лекарства. Известно, что для производства сыра высокого качества необходим фермент, створаживающий молоко, - реннин. Этот фермент добывают из желудков молочных телят. Он дорог и не всегда доступен. Наконец, генные инженеры сконструировали дрожжи, которые стали производить этот ценный белок при микробиологическом синтезе.
Следующий этап генной инженерии - создание трансгенных овец, которые синтезируют химозин в молоке. Небольшое стадо наших овец в России находится на Ленинских Горках под Москвой. Эти овцы синтезируют до 300 мг/л фермента в молоке. Для процесса сыроварения белок можно не выделять, а использовать просто в составе молока.
Возможна экспансия биотехнологии в области, которые сегодня целиком принадлежат химии. Это - биокатализ (вместо химического катализа) и новые материалы. Один из процессов биокатализа, успешно реализованного в промышленности, - получение акриламида из акрилонитрила.
Акриламид служит исходным мономером для получения полимеров и сополимеров, широко используемых при очистке воды и стоков, в горном деле, при осветлении соков и вин, приготовлении красок и т.п.
До недавнего времени процесс гидролиза нитрила вели при 105 С в присутствии серной кислоты. После окончания процесса серную кислоту нейтрализовали аммиаком. Большое количество сернокислого аммония, в конечном счёте оказывался в реках. Были велики затраты энергии, быстро изнашивалось оборудование, и качество акриламида оставляло желать лучшего.
Химических пестицидов резко улучшит состояние окружающей среды, сократит расходы нефти и газа на их производство (на 3%). Появятся новые материалы новые лекарства, высокопроизводительные животные, новые пищевые продукты.
По заключению экспертов конгресса США, «биотехнология в наибольшей степени изменит образ жизни людей в XXI веке».
На сегодняшний день существует несколько сотен генетически изменённых продуктов. Уже на протяжении нескольких лет их употребляют миллионы людей в большинстве стран мира. Есть данные, что подобными технологиями пользуются для получения продуктов, реализуемых через сеть McDonalds. Многие крупные концерны, типа Unilever, Nestle, Danon и другие используют для производства своих товаров генно-инженерные продукты и экспортируют их во многие страны мира. Но во многих странах такие продукты обязательно должны содержать на упаковке надпись "Сделано из генетически модифицированного продукта".
Некоторые считают, что, внося изменения в генный код растения или животного, учёные делают то же самое, что и сама природа. Абсолютно все живые организмы от бактерии до человека - это результат мутаций и естественного отбора.
Самые распространенные - соя, кукуруза, масличный рапс и хлопок. В некоторых странах для выращивания одобрены трансгенные помидоры, рис, кабачки. Эксперименты проводятся на подсолнечнике, сахарной свекле, табаке, винограде, деревьях и т. д. В тех странах, где пока нет разрешения на выращивание трансгенов, проводятся полевые испытания. Чаще всего культурные растения наделяют устойчивостью к гербицидам, насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. В результате поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые или толерантные (терпимые) к гербицидам, выживают.
Основная масса трансгенов культивируется в США, в Канаде, Аргентине, Китае, меньше - в других странах. Европа же очень озабочена. Под натиском общественности и организаций потребителей, которые хотят знать, что они едят, в некоторых странах введен мораторий на ввоз таких продуктов (Австрия, Франция, Греция, Великобритания, Люксембург). В других принято жесткое требование маркировать генетически измененное продовольствие.
Соя - пока единственная трансгенная культура, разрешенная к применению в России. На подходе - трансгенный картофель, кукуруза и сахарная свекла.
Первым искусственно изменённым продуктом стал помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде при температуре 12 градусов. Но как только такой помидор помещают в тепло, он за несколько часов становится спелым.
Американцы добились изменения клубники, тюльпанов. Вывели сорт картофеля, который при жарке впитывает меньше жира. Они же скоро планируют получить помидоры-гиганты кубической формы, чтобы их было легче упаковывать в ящики. Швейцарцы начали выращивать кукурузу, которая выделяет собственный яд против вредителей.
Был создан "помидор с жабрами" - помидор, в который для увеличения морозоустойчивости вживили ген североамериканской плоской рыбы. Кстати, именно этот гибрид овоща и рыбы получил кличку "завтрак Франкенштейна".
В Московском институте картофелеводства выводится картофель с человеческим интерфероном крови, который повышает иммунитет. А в Институте животноводства получен патент на овцу, у которой в молоке присутствует сычужный фермент, необходимый для производства сыра. Специалисты утверждают, что при новой технологии производства сыра, достаточно будет всего 200 овец, чтобы обеспечить сыром всю Россию.
Сегодня ученые работают над созданием "умных растений", которые могут посылать фермерам сигнал SOS, светиться, когда им не хватает воды или при первых признаках заболевания. Полным ходом идут работы по созданию пластмассы, которая бы разрушалась, попадая в окружающую среду - в масличные культуры вводят гены бактерий, позволяющие выращивать эту биоразлагаемую пластмассу прямо на полях. Недавно американцы заявили, что им удалось добавить в генную структуру обычного хлопка гены растений, цветущих голубым цветом. Появилась реальная возможность революционизировать рынок джинсовой ткани - красильное производство прекратит сброс в окружающую среду ядовитых сточных вод. Эта технология будет запущена в производство в 2005 году.
Заключение
Роль генов в развитии организма огромна. Гены характеризуют все признаки будущего организма, такие, как цвет глаз и кожи, размеры, вес и многое другое. Гены являются носителями наследственной информации, на основе которой развивается организм.
Таким образом, генетика занимает важное место в жизни человека. Именно она объясняет механизмы наследования признаков человека, как патологических, так и положительных. Так, пол человека - это менделирующий признак, наследуемый по принципу обратного скрещивания.
Список литературы.
1) Голубева О.Н., Суханов А.Д. «Концепции современного естествознания», издательство «Агар», М., 2000 год.
2) Горелов А.А. «Концепции современного естествознания», ООО «Издательство Астрель», М., 2003 год.
3) Данилова В.С., Кожевников Н.Н. «Основные концепции современного естествознания», издательство «Аспект пресс», М., 2000 год.
4) Заяц Р.Г., Рачковская И.В., Стамбровская В.М. «Биология для поступающих в вузы», издательство «Высшая школа», Минск, 2001 год.
5) Карпенков С.Х. «Концепции современного естествознания», издательство «Академический проект», М., 2003 год.
6) Корочкин Л.И. «Геном, клонирование, происхождение человека», издательство «Век 2», Фрязино, 2003 год.
7) Шитиков Д.А. «Я познаю мир: генетика», ООО «Издательство Астрель», М., 2004 год.
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы
Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).
Чтобы скачать бесплатно Контрольные работы на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.
Важно! Все представленные Контрольные работы для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.
Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.
Если Контрольная работа, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.
Добавить отзыв могут только зарегистрированные пользователи.