Studrb.ru банк рефератов
Консультация и поддержка студентов в учёбе

Главная » Бесплатные рефераты » Бесплатные рефераты по концепции современного естествознания »

Ген и его свойства. Генетика и практика

Ген и его свойства. Генетика и практика [18.11.12]

Тема: Ген и его свойства. Генетика и практика

Раздел: Бесплатные рефераты по концепции современного естествознания

Тип: Контрольная работа | Размер: 28.37K | Скачано: 277 | Добавлен 18.11.12 в 21:18 | Рейтинг: 0 | Еще Контрольные работы

Вуз: ВЗФЭИ

Год и город: 2010


Содержание

1. Введение 3

2. Определение понятия «ген», характеристика его основных принципов и определение сущности генетики, как науки 3

3. Характеристика генетики, как науки 6

4. Теоретическое и практическое значение современной генетики 9

5. Заключение 12

6. Список используемой литературы 13

 

 Введение

Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысяче­летий человек пользовался генетическими методами для улучшения домашних животных и возделывае­мых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разно­образным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения к другому. Отбирая определенные организмы из при­родных популяций и скрещивая их между со­бой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Однако лишь в начале XX в. ученые стали осозна­вать в полной мере важность законов наследствен­ности и ее механизмов.

Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866г. опубликовал статью, заложившую основы совре­менной генетики. С тех пор генетика достиг­ла больших успехов в объяснении природы наслед­ственности и на уровне организма, и на уровне гена.

 

1. Определение понятия "ген", характеристика его основных принципов и определение сущности генетики, как науки.

Подобно тому, что в физике элементарными единицами вещества являются атомы, в генетике элементарными дискретными единицами наследственности и изменчивости являются гены. Хромосома любого организма, будь то бактерия или человек, содержит длинную (от сотен тысяч до миллиардов пар нуклеотидов) непрерывную цепь ДНК, вдоль которой расположено множество генов. Установление количества генов, их точного местоположения на хромосоме и детальной внутренней структуры, включая знание полной нуклеотидной последовательности, - задача исключительной сложности и важности.

Согласно современным представлениям, ген, кодирующий синтез определенного белка, у эукариот состоит из нескольких обязательных элементов. Прежде всего, это обширная регуляторная зона, оказывающая сильное влияние на активность гена в той или иной ткани организма на определенной стадии его индивидуального развития. Далее расположен непосредственно примыкающий к кодирующим элементам гена промотор – последовательность ДНК длиной до 80-100 пар нуклеотидов, ответственная за связывание РНК-полимеразы, осуществляющей транскрипцию данного гена. Вслед за промотором лежит структурная часть гена, заключающая в себе информацию о первичной структуре соответствующего белка. Эта область для большинства генов эукариот существенно короче регуляторной зоны, однако ее длина может измеряться тысячами пар нуклеотидов.

Cтрогое доказательство существования элементарных наследственных факторов было получено в 1865г. чешским естествоиспытателем И. Г. Менделем, четко сформулировавшим гипотезу о дискретных наследственных факторах, каждый из которых управляет развитием строго определенного наследственного признака и в своей активности не зависит от других наследственных факторов. Само понятие "ген" в биологию ввел датский ученый У. Иогансен в 1909г.. В 1910 - 1913гг. американский биолог Т. Морган и его ученики доказали, что гены линейно расположены в особых структурах клеточного ядра -  хромосомах и что находящиеся в одной хромосоме гены передаются потомкам совместно, образуя единую группу сцепления. Таким образом, число групп сцепления у любого организма равно числу хромосом в его клетках. Была обнаружена также способность хромосом обмениваться друг с другом участками большей или меньшей длины. Перед созреванием половых клеток парные хромосомы сближаются, образуют единую структуру, и в этот момент может произойти их перекрест с последующим разрывом отдельных хромосом и направленным соединением концов в месте разрыва (так называемый кроссинговер), что и приводит к обмену участками между хромосомами. Было установлено, что при кроссинговере разрыв хромосом происходит в межгенных участках, так что отдельные гены передаются целиком, не дробясь.

После открытия в 1899г. российским ученым С. И. Коржинским и в 1900 - 1901г.г. голланским ученым Г. де Фризом процесса изменения отдельных генов (мутаций) в естественных условиях, а в 1925 - 1928г.г. - возможности получения искусственных мутаций под действием радиации и химических веществ создались условия для изучения изменчивости отдельных генов. При этом было подтверждено, что отдельные гены изменяются, мутируют, как целое. Таким образом, сложилось представление о гене, как элементарной единице наследственного материала, которая ведет себя, как целое при мутировании и передается целиком при кроссинговере. Однако вскоре были получены данные, доказывающие дробимость генов, как в расположения нуклеотидов. В противном случае под контролем измененного гена будет синтезироваться белок с нарушенной структурой и измененной функцией или даже синтез какого-либо белка окажется невозможным. При этом установлено, что изменение (перестановка или замена) даже одного нуклеотида в гене может вести к резкому изменению свойств кодируемого им фермента, что в свою очередь может обусловить возникновение наследственного заболевания. В 1961г. французские ученые Ф. Жакоб и Ж. Моно обнаружили, что гены функционально неоднородны, что существует две группы генов: структурные, управляющие синтезом специфических белков (главные образующие ферментов), и регуляторные, контролирующие деятельность структурных генов. Дальнейшими исследованиями был расшифрован сложный механизм регуляции активности структурных генов и уточнены некоторые детали процесса «считывания» генетической информации.

Можно сделать вывод, что ген - это элементарная единица наследственности с характерным рядом признаков. По своему уровню ген - внутриклеточная молекулярная структура, по химическому составу - это нуклеиновые кислоты, в составе которых основную роль играют азот и фосфор. Гены располагаются, как правило, в ядрах клеток. Ген является центральным понятием генетики.

 

2. Характеристика генетики, как науки.

Генетика - наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные выдающимся чешским ученым Грегором Менделем (1822 - 1884) при скрещивании различных сортов гороха.

Наследственность - это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития.

В то же время в природе существуют различия между особями как разных видов, так и одного и того же вида, сорта, породы и т. д. Это свидетельствует о том, что наследственность неразрывно связана с изменчивостью.

Изменчивость - способность организмов в процессе онтогенеза приобретать новые признаки и терять старые.

Таким образом, наследственность, будучи консервативной, обеспечивает сохранение признаков и свойств организмов на протяжении многих поколений, а изменчивость обусловливает формирование новых признаков в результате изменения генетической информации или условий внешней среды.

Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования:

1) механизмов хранения и передачи генетической информации от родительских форм к дочерним; 2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и механизмов изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора, как движущих факторов эволюции органического мира.

При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный, организменный, популяционный) в генетике используют разнообразные методы современной биологии: гибридологический, цитогенетический, генеалогический, близнецовый, биохимический, популяционно - статистический и др.

Однако среди множества методов изучения закономерностей наследственности центральное место принадлежит гибридологическому методу. Этот метод позволяет анализировать закономерности наследования и изменчивости отдельных признаков и свойств организма при половом размножении, а также изменчивость генов и их комбинирование.

Введем основные понятия генетики. При изучении закономерностей наследования обычно скрещивают особи, отличающиеся друг от друга альтернативными (взаимоисключающими) признаками (например, желтый и зеленый цвет, гладкая и морщинистая поверхность горошин). Гены, определяющие развитие альтернативных признаков, называются аллельными. Они располагаются в одинаковых локусах (местах) гомологичных (парных) хромосом.
Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения, называют доминантным, а не проявляющийся (подавленный) называют рецессивными. Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены (два доминантных или два рецессивных), то такой организм называется гомозиготным. Если же в гомологичных хромосомах локализованы разные гены одной аллельной пары, то такой организм принято называть гетерозиготным по данному признаку. Он образует два типа гамет и при скрещивании с таким же по генотипу организмом дает расщепление.

Совокупность всех генов организма называется генотипом. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов.

Совокупность всех свойств и признаков организма называется фенотипом.
Фенотип развивается на базе определенного генотипа в результате взаимодействия с условиями внешней среды.

Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина – другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм.

Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз – это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. Мейоз – это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток).

Современная генетика доказала наличие генов у всех живых организмов и установила, что все без исключения морфологические признаки организмов, физиологические и биохимические реакции в них развиваются и протекают под контролем генов. Молекулярные механизмы работы генов были детально изучены, и во многих случаях прослежено развитие определенных признаков в зависимости от работы конкретных генов. Удалось также изучить различные механизмы обмена генами между клетками одного и того же организма и между разными организмами, что важно для эволюции; был детально исследован механизм реализации генетической программы при развитии организмов. Была доказана сложная природа этого процесса и установлено, что на него влияют различные факторы, в том числе факторы окружающей среды и среди них многие лекарственные препараты (антибиотики, гормоны, сульфаниламиды и т. д.), искажающие гены или мешающие их работе.

 

3. Теоретическое и практическое значение современной генетики.

Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 19 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности – это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения «полукровка», «чистокровный» и др. сохранились до наших дней.

К практическим задачам генетики относятся: 1) выбор наиболее эффективных типов гибридизации и способов отбора; 2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов; 3) искусственное получение наследственно измененных форм живых организмов; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных; 5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

Генетика является теоретической основой селекции, так как именно знание законов генетики позволяет целенаправленно управлять появлением мутаций, предсказывать результаты скрещивания, правильно проводить отбор гибридов. В результате применения знаний по генетике на практике удалось создать более 10000 сортов пшеницы на основе нескольких исходных диких сортов, получить новые штаммы микроорганизмов, выделяющих пищевые белки, лекарственные вещества, витамины и т. п.

К задачам современной селекции относится создание новых и улучшение уже существующих сортов растений, пород животных и штаммов микроорганизмов.

Многолетняя селекционная работа позволила вывести много десятков пород домашних кур, отличающихся высокой яйценоскостью, большим весом, яркой окраской и т. п. А их единый предок — банкливская кура из Юго-Восточной Азии. На территории России не растут дикие представители рода крыжовник. Однако на основе вида крыжовник отклоненный, встречающийся на Западной Украине и Кавказе, получено более 300 сортов, многие из которых прекрасно плодоносят в России.

Селекция занимается:

 На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина. Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим.

Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930 - 1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» – трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ.

Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы, изучать наследственные болезни, проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.

 

Заключение

 Ген, сложная единица наследственности и изменчивости, является центральным понятием генетики. В свою очередь, наследственность и изменчивость являются главной частью самого понятия генетики, как науки.

Из всего вышесказанного можно сделать вывод, что генетика занимает очень важное место в жизни человека, и, по моему мнению, она по праву может считаться одной из самых важных областей биологии. Именно она объясняет механизмы наследования признаков человека, как положительных, так и отрицательных.

С практической стороны, благодаря генетике, ее знаниям, разрабатываются методы лечения ряда наследственных заболеваний, таких, как фенилкетонурия, сахарный диабет и другие.

Генетика до сих пор остается наукой, хранящей в себе множество тайн.

 

Список используемой литературы:

1. Алиханян С.И. Общая генетика. М.: 1985

2. Фогель Ф., Мотульски А. Генетика человека. М.: 1990

3. Бочков Н.П., Чеботарев А.Н. Наследственность человека и мутагены окружающей среды. М.: 1989

4. Гужов Ю.Л. Генетика и селекция. М.: 1984

5. Сведения из интернета

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Бесплатная оценка

0
Размер: 28.37K
Скачано: 277
Скачать бесплатно
18.11.12 в 21:18 Автор:

Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).


Чтобы скачать бесплатно Контрольные работы на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Контрольные работы для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.


Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Добавить работу


Если Контрольная работа, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.


Добавление отзыва к работе

Добавить отзыв могут только зарегистрированные пользователи.


Похожие работы

Консультация и поддержка студентов в учёбе