Studrb.ru банк рефератов
Консультация и поддержка студентов в учёбе

Главная » Бесплатные рефераты » Бесплатные рефераты по информатике »

Топология ЛВС (Вариант № 36)

Топология ЛВС (Вариант № 36) [12.09.14]

Тема: Топология ЛВС (Вариант № 36)

Раздел: Бесплатные рефераты по информатике

Тип: Курсовая работа | Размер: 172.55K | Скачано: 331 | Добавлен 12.09.14 в 19:15 | Рейтинг: +1 | Еще Курсовые работы


ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ 3

1. Локальные вычислительные сети 4-5

1.1. История развития, понятие, назначение и отличительные особенности локальных вычислительных сетей (ЛВС) 4-5

 1.2. Классификация ЛВС. Характеристика отдельных видов ЛВС 6-11

2. Топология построения локальных вычислительных сетей 12-13

2.1. Шинная топология  12-13

2.2. Кольцевая топология 14

2.3. Топология типа звезда 15-16

2.4. Топология типа Token Ring 17-19

2.5. Древовидная структура локальных вычислительных сетей 20

ЗАКЛЮЧЕНИЕ 21-22

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 23

 

ВВЕДЕНИЕ

На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet, FidoNet, FREEnet и т.д. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, E–Mail писем, электронных конференций и т.д.) не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а так же обмен информацией между компьютерами разных фирм производителей работающих под разным программным обеспечением.

Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право игнорировать и не применять их на практике.

Зачастую возникает необходимость в разработке принципиального решения вопроса по организации ИВС (информационно–вычислительной сети) на базе уже существующего компьютерного парка и программного комплекса, отвечающей современным научно–техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений.

 

1.Локальные вычислительные сети

1.1. История развития, понятие, назначение и отличительные особенности локальных вычислительных сетей (ЛВС).

Работы по созданию ЛВС начались еще в 60-х годах с попытки внести новую технологию в телефонную связь. Эти работы не имели серьезных результатов вследствие дороговизны и низкой надежности электроники. В начале 70-х годов в исследовательском центре компании "Xerox", лабораториях при Кембриджском университете и ряде других организаций было предложено использовать единую цифровую сеть для связи мини-ЭВМ. Использовалась шинная и кольцевая магистрали, данные передавались пакетами со скоростью более 2 Мбит/с.

 В конце 70-х годов появились первые коммерческие реализации ЛВС: компания "Prime" представила ЛВС "RingNet", компания "Datapoint" - ЛВС "Attached Resourse Computer" (ARC) с высокоскоростным коаксиальным кабелем. В 1980 году в институте инженеров по электротехнике и электронике IEEE (Institute of Eleсtrical and Eleсtronic Engeneers) организован комитет "802" по стандартизации ЛВС. В дальнейшем темпы развития ускорились, и на сегодняшний день имеется большое количество коммерческих реализаций ЛВС.

К локальным вычислительным сетям относятся сети, узлы которых располагаются на небольшом расстоянии друг от друга, обычно не дальше нескольких сотен метров. Примерами таких сетей смогут служить сети отдельных предприятий и организаций, а также их структурных подразделений. Основным назначением ЛВС является предоставление информационных, вычислительных и технических ресурсов подключенным к сети пользователей.

ЛВС имеют характерные отличительные черты, позволяющие выделить в отдельный класс компьютерных сетей. К характерным особенностям ЛВС относятся:

1. Компактное территориальное расположение узлов сети. Расстояние между узлами сети обычно не превращает нескольких сот метров.

2. В качестве среды передачи  данных используется кабельная система. Беспроводные средства связи используются крайне редко.

3. В качестве узлов сети чаще всего используются персональные компьютеры. Мэйнфреймы используются в ЛВС специального назначения.

4. Методы доступа, топологии, компоненты ЛВС разнообразны, имеют высокую степень совместимости и гибкости применения, что позволяет разрабатывать сети любой сложности и архитектуры.

 

1.2.Классификация ЛВС. Характеристика отдельных видов ЛВС.

Существует множество способов классификации сетей. Основным критерием классификации принято считать способ администрирования. То есть в зависимости от того, как организована сеть и как она управляется, её можно отнести к локальной, распределённой, городской или глобальной сети. Управляет сетью или её сегментом сетевой администратор. В случае сложных сетей их права и обязанности строго распределены, ведётся документация и журналирование действий команды администраторов.

Компьютеры могут соединяться между собой, используя различные среды доступа: медные проводники (витая пара), оптические проводники (оптические кабели) и через радиоканал (беспроводные технологии). Проводные связи устанавливаются через Enternet, беспроводные — через  Wi-Fi, Bluetooth, GPRS и прочие средства. Отдельная локальная вычислительная сеть может иметь шлюзы с другими локальными сетями, а также быть частью глобальной вычислительной сети (например, Интернет) или иметь подключение к ней.

Чаще всего локальные сети построены на технологиях Enternet или Wi-Fi. Следует отметить, что ранее использовались протоколы Frame Relay, Token ring, которые на сегодняшний день встречаются всё реже, их можно увидеть лишь в специализированных лабораториях, учебных заведениях и службах. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.

Маршрутизация в локальных сетях используется примитивная, если она вообще необходима. Чаще всего это статическая либо динамическая маршрутизация (основанная на протоколе RIP).

Иногда в локальной сети организуются рабочие группы — формальное объединение нескольких компьютеров в группу с единым названием.

Сетевой администратор — человек, ответственный за работу локальной сети или её части. В его обязанности входит обеспечение и контроль физической связи, настройка активного оборудования, настройка общего доступа и предопределённого круга программ, обеспечивающих стабильную работу сети.

Технологии локальных сетей реализуют, как правило, функции только двух нижних уровней модели OSI - физического и канального. Функциональности этих уровней достаточно для доставки кадров в пределах стандартных топологий, которые поддерживают LAN: звезда (общая шина), кольцо и дерево. Однако из этого не следует, что компьютеры, связанные в локальную сеть, не поддерживают протоколы уровней, расположенных выше канального. Эти протоколы также устанавливаются и работают на узлах локальной сети, но выполняемые ими функции не относятся к технологии LAN.

Адресация

В локальных сетях, основанных на протоколе IPv4, могут использоваться специальные адреса, назначенные IANA (стандарты RFC 1918 и RFC 1597):

10.0.0.0—10.255.255.255;

172.16.0.0—172.31.255.255;

192.168.0.0—192.168.255.255.

Такие адреса называют частными, внутренними, локальными или «серыми»; эти адреса не доступны из сети Интернет. Необходимость использовать такие адреса возникла из-за того, что при разработке протокола IP не предусматривалось столь широкое его распространение, и постепенно адресов стало не хватать. Для решения этой проблемы был разработан протокол  IPV 6, однако он пока мало популярен. В различных непересекающихся локальных сетях адреса могут повторяться, и это не является проблемой, так как доступ в другие сети происходит с применением технологий, подменяющих или скрывающих адрес внутреннего узла сети за её пределами — NAT или прокси дают возможность подключить ЛВС к глобальной сети (WAN). Для обеспечения связи локальных сетей с глобальными применяются маршрутизаторы (в роли шлюзов и файрволов).

Конфликт IP адресов — распространённая ситуация в локальной сети, при которой в одной IP-подсети оказываются два или более компьютеров с одинаковыми IP-адресами. Для предотвращения таких ситуаций и облегчения работы сетевых администраторов применяется протокол DHCP, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP.

Клиент — сервер

Архитектура или организация построения сети, в которой производится разделение вычислительной нагрузки между включенными в ее состав ЭВМ, выполняющими функции “клиентов”  и одной мощной центральной ЭВМ — “ сервером”. В частности, процесс наблюдения за данными отделен от программ, использующих эти данные. Например, сервер может поддерживать центральную базу данных, расположенную на большом компьютере, зарезервированном для этой цели. Клиентом будет обычная программа, расположенная на любой ЭВМ, включенной в сеть, а также сама ЭВМ, которая по мере необходимости запрашивает данные с сервера. Производительность при использовании клиент— серверной архитектуры выше обычной, поскольку как клиент, так и сервер делят между собой нагрузку по обработке данных. Другими достоинствами клиент—серверной архитектуры являются: большой объем памяти и ее пригодность для решения разнородных задач, возможности подключения большого количества рабочих станций, включая ПЭВМ и пассивные терминалы а также установки средств защиты от  несанкционированного доступа (как сети в целом, так и отдельных ее терминалов, баз данных и т. д.).

Файл — сервер

Архитектура построения ЛВС, основанная на использовании так называемого файлового сервера  – относительно мощной ЭВМ, управляющей созданием, поддержкой и использованием общих информационных ресурсов локальной сети, включая доступ к ее базам данных (БД) и отдельным файлам, а также их защиту. Для поддержки и ведения больших и очень больших БД, содержащих десятки миллионов записей, используются т.н. многопроцессорные системы, способные эффективно обрабатывать значительные объемы информации и обладающие хорошим соотношением характеристик цена/производительность. В отличие от клиент—сервера  архитектуры данный принцип построения сети предполагает, что включенные в нее рабочие станции являются полноценными ЭВМ с установленным на них полным объемом необходимого для независимой работы составом средств основного и прикладного программного обеспечения. Другими словами, в указанном случае отсутствуют возможности разделения вычислительной нагрузки между сервером и терминалами сети, характерные для архитектуры типа файл—сервер, и, как следствие, общие стоимостные показатели цена/производительность сети в целом могут быть ниже. Общим недостатком ранних версий разработок средств программного обеспечения отечественных АБИС являлся тот факт, что они были ориентированы только на файл—серверную архитектуру построения вычислительной сети.

Одноранговая ЛВС.

“Безсерверная” организация построения сети, которая допускает включение в нее как ЭВМ различной мощности, так и терминалов ввода-вывода. Термин “одноранговая сеть” означает, что все терминалы сети имеют в ней одинаковые права. Каждый пользователь одноранговой сети может определить состав файлов, которые он предоставляет для общего использования. Таким образом, пользователи одноранговой сети могут работать как со всеми своими файлами, так и с файлами, предоставляемыми другими ее пользователями. Подключение отдельных ЭВМ в одноранговую сеть производится преимущественно высокочастотными коаксиальными кабельными линиями связи. Известны три основных варианта топологии  одноранговой сети, которые носят наименования “шина ”, “ кольцо” и “звезда”. Создание одноранговой сети обеспечивает наряду с взаимообменом данными между включенными в нее ЭВМ совместное использование части дискового пространства (через public files), а также совместную эксплуатацию периферийных устройств (например, принтеров). Существуют и другие возможности, например, когда одна из ЭВМ временно берет на себя функции “сервера”, а остальные работают в режиме “клиентов”. Последнее широко используется в различного рода обучающих системах. Достоинствами одноранговых ЛВС являются также: относительная простота их установки и эксплуатации, умеренная стоимость, возможность развития (например, по числу включенных в них терминалов), независимость выполняемых вычислительных и других процессов для каждой включенной в сеть ЭВМ.

Сегмент (сети)

Участок локальной сети, отделенный от других участков повторителем,  концентратором ,  мостом или маршрутизатором. Все станции сегмента поддерживают один и тот же протокол доступа к среде передачи и делят ее общую пропускную способность.

Группа устройств (например, ПК, серверы, принтеры и т. п.), которые соединены при помощи сетевого оборудования. В сегменте сети Enternet компьютеры могут быть соединены с помощью концентраторов. Сигнал, передаваемый по сети, будет услышан всеми рабочими станциями, входящими в сеть. Если сегмент соединен с другим сегментом с помощью моста или маршрутизатора, то они могут обмениваться пакетами. Сегменты, соединенные вместе при помощи моста или маршрутизатора, формируют группу сетей (internet work). Сегменты очень часто называют подсетями .

 

2.Топология построения локальных вычислительных сетей

2.1.Шинная топология

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется  физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

 Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема.

Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных. Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

Данная топология применяется в локальных сетях с архитектурой Enternet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

Преимущества сетей шинной топологии:

- отказ одного из узлов не влияет на работу сети в целом;

- сеть легко настраивать и конфигурировать;

- сеть устойчива к неисправностям отдельных узлов.

 Недостатки сетей шинной топологии:

- разрыв кабеля может повлиять на работу всей сети;

- ограниченная длина кабеля и количество рабочих станций;

- трудно определить дефекты соединений.

 

2.2.Кольцевая топология

В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется с входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо.

Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети. Как правило,  в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

 

2.3.Топология типа звезда

В сети, построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу. Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.

Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.

 Данная топология применяется в локальных сетях с архитектурой 10Base-T Enternet.

 Преимущества сетей топологии звезда:

- легко подключить новый ПК;

- имеется возможность централизованного управления;

- сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии звезда:

- отказ хаба влияет на работу всей сети;

- большой расход кабеля;

 

2.4.Топология типа Token Ring

Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.

Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.

 Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не влечет за собой отказ сети как в топологии кольцо, потому что концентратор отключает неисправную станцию и замкнет кольцо передачи данных.

В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции.

 Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные.

 Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.

Преимущества сетей топологии Token Ring:

-топология обеспечивает равный доступ ко всем рабочим станциям;

-высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.

 Недостатки сетей топологии Token Ring:

-большой расход кабеля и соответственно дорогостоящая разводка линий связи.

 

2.5. Древовидная структура локальных вычислительных сетей

Наряду с известными топологиями вычислительных сетей «кольцо», «звезда» и «шина», на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети (корень) располагается в точке, в которой собираются коммуникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерным платам применяют сетевые усилители и/или коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.

На практике применяют две их разновидности, обеспечивающие подключение соответственно восьми или шестнадцати линий.

Устройство к которому можно присоединить максимум три станции, называют пассивным концентратором. Пассивный концентратор обычно используют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что возможное максимальное расстояние до рабочей станции не должно превышать нескольких десятков метров.

 

ЗАКЛЮЧЕНИЕ

Локальная вычислительная сеть (ЛВС, локальная сеть; англ. Local Area Network, LAN) - компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

ЛВС - это транспортная инфраструктура передачи данных в территориально ограниченном пространстве. ЛВС является ключевым элементом инфраструктуры предприятия и от того, насколько предсказуемо ведет себя ЛВС, во многом зависит стабильность работы информационных систем, а следовательно, и стабильность бизнеса. С ростом числа пользователей управление и поддержка Вычислительной Сети становится все более ответственными и сложным процессом.

Создание ЛВС обеспечивает:

 

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

  1. Информатика в экономике: Учеб. Пособие./Под ред. Проф. Б.Е.Одинцова, проф. А.Н.Романова. – М.: Вузовский учебник, 2008. – 478 с.
  2. Экономическая информатика: Учебник для вузов./ Под ред. д.т.н., проф. В.В. Евдокимова. - СПб: Питер. 1997. - 592 с.
  3. Учебник. - 3-е перераб.изд. /Под ред.
  4. Информационные системы и технологии в экономике Профессиональный учебник: Информатика В. Б. Уткин, К. В. Балдин Юнити-Дана 336 стр.
  5. Экономическая информатика: Учебное пособие / Н.И. Савицкий - М.: Экономистъ, 2004. - 429 с.

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Бесплатная оценка

+1
Размер: 172.55K
Скачано: 331
Скачать бесплатно
12.09.14 в 19:15 Автор:

Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).


Чтобы скачать бесплатно Курсовые работы на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Курсовые работы для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.


Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Добавить работу


Если Курсовая работа, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.


Добавление отзыва к работе

Добавить отзыв могут только зарегистрированные пользователи.


Похожие работы

Консультация и поддержка студентов в учёбе