Studrb.ru банк рефератов
Консультация и поддержка студентов в учёбе

Главная » Бесплатные рефераты » Бесплатные рефераты по информатике »

Основные структуры данных

Основные структуры данных [05.10.10]

Тема: Основные структуры данных

Раздел: Бесплатные рефераты по информатике

Тип: Курсовая работа | Размер: 365.98K | Скачано: 385 | Добавлен 05.10.10 в 22:46 | Рейтинг: 0 | Еще Курсовые работы

Вуз: ВЗФЭИ

Год и город: Смоленск 2010


Оглавление

Введение 3

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 4

Введение 4

1. Информация и данные 5

2. Классификация структур данных 6

3. Характеристики основных типовых структур 9

3.1 Линейные и нелинейные 9

3.2 Списковые структуры данных 10

3.3 Древовидные (иерархические) структуры данных 13

3.4 Сетевые структуры данных 14

3.5 Табличные структуры данных .14

Заключение 16

ПРАКТИЧЕСКАЯ ЧАСТЬ 18

1. Общая характеристика задачи 18

2. Описание алгоритма решения задачи 20

Список использованной литературы 26

Приложения 27

 

Введение

Веками человечество накапливало знания, сведения об окружающем мире, т.е. собирало информацию. Вна­чале информация передавалась из поколения в поколение в виде преданий и устных рассказов. Возникновение и развитие книжного дела позволило передавать и хранить информацию в более надежном письменном виде. Открытия в области электричества привели к появлению телеграфа, теле­фона, радио, телевидения — средств, позволяющих оперативно передавать и накапливать информацию. Развитие прогресса обусловило резкий рост информации, в связи, с чем вопрос о её сохранении и переработке стано­вился год от года острее. С появлением вычислительной техники значи­тельно упростились способы хранения, а главное, обработки информации. Развитие вычислительной техники на базе микропроцессоров приводит к совершенствованию компьютеров и программного обеспечения. Появля­ются программы, способные обработать большие потоки информации. С их помощью создаются информационные системы. Целью любой информационной системы является обработка данных об объектах и явлениях реального мира и предоставление нужной человеку информации о них.

В данной работе рассматривается: информация и данные, чем они различаются; как информация  переходит в структурированные данные. Рассматриваются такие понятия, как «тип данных», «структура данных», «модель данных» и «база данных».  Приводится классификация структур данных, обширная информация о физическом и логическом представлении структур данных всех классов памяти ЭВМ: простых, статических и др., а также,  информация о возможных операциях над всеми перечисленными структурами.

Для практической части – задача, вариант №6 «ООО Снежок», которая решена при помощи программы Excel.

Характеристика ПК использованного для выполнения работы: монитор Acer P223W, 22” Wide, 1680 x 1050; клавиатура Logitech Internet PRO; мышь Genius; принтер Canon LBP 2900; системный блок IS Mechanics (материнская плата asus, процессор intel). Системное обеспечение Windows XP.

 

Теоретическая часть

Введение

Структура данных – это организационная схема записи или массива, в соответствии с которой упорядочены данные, с тем, чтобы их можно интерпретировать и выполнять над ними определённые операции. Это исполнитель, который организует работу с данными, включая их хранение, добавление и удаление, модификацию, поиск. Её можно рассматривать, как своего рода склад или библиотеку.

Структура данных поддерживает определённый порядок доступа к ним. Понятие структуры данных можно определить, как совокупность внешних связей между элементами данных, которые на принятом уровне рассмотрения можно считать неделимыми, элементарными.

Работа с большими наборами данных автоматизируется проще, когда данные упорядочены, то есть образуют заданную структуру. Существуют следующие  основные типы структур данных:

• списковые

• древовидные или иерархические

• сетевые

табличные

 

1. Информация и данные

В информатике различают два понятия «данные» и «информация».  Данные представляют собой информацию, находящуюся в формализованном виде и предназначенную для обработки техническими системами. Под информацией понимается совокупность представляющих интерес фактов, событий, явлений, которые необходимо зарегистрировать и обработать. Информация в отличие от данных – это то, что нам интересно, что можно хранить, накапливать, применять и передавать. Данные только хранятся, а не используются. Но как только данные начинают использоваться, то они преобразуются в информацию. В процессе обработки информация изменяется по структуре и форме. Признаками структуры является взаимосвязь элементов информации. Структура информации классифицируется на формальную и содержательную. Формальная структура информации ориентирована на форму представления информации, а содержательная – на содержание.

Виды форм представления информации:

  1. По способу отображения: символьная (знаки, цифры, буквы); графическая (изображения); текстовая (набор букв, цифр) и звуковая.
  2. По месту появления: внутренняя (выходная) и внешняя (входная).
  3. По стабильности: постоянная и переменная.
  4. По стадии обработки: первичная и вторичная.

Независимо от содержания и сложности любые данные в памяти ЭВМ представляются последовательностью двоичных разрядов, или битов, а их значениями являются соответствующие двоичные числа. Для человека описывать и исследовать сколько-нибудь сложные данные в терминах последовательностей битов весьма неудобно. Более крупные и содержательные, нежели бит, "строительные блоки" для организации произвольных данных получаются на основе понятия "структуры данного".

 

2. Классификация структур данных

Структуры данных служат материалами, из которых строятся программы. Как правило, данные имеют форму чисел, букв, текстов, символов и более сложных структур типа последовательностей, списков и деревьев.

Для точного описания абстрактных структур данных и алгоритмов программ используются такие системы формальных обозначений, называемые языками программирования, в которых смысл всякого предложения определяется точно и однозначно. Среди средств, представляемых почти всеми языками программирования, имеется возможность ссылаться на элемент данных, пользуясь присвоенным ему именем. Выбор правильного представления данных служит ключом к удачному программированию и может в большей степени сказываться на производительности программы, чем детали используемого алгоритма. Вряд ли когда-нибудь появится общая теория выбора структур данных. Под структурой данных в общем случае понимают множество элементов данных и множество связей между ними. Такое определение охватывает все возможные подходы к структуризации данных, но в каждой конкретной задаче используются те или иные его аспекты. Поэтому вводится дополнительная классификация структур данных, направления которой соответствуют различным аспектам их рассмотрения. Прежде чем приступать к изучению конкретных структур данных, дадим их общую классификацию по нескольким признакам.

Физическая структура данных отражает способ физического представления данных в памяти машины и называется еще структурой хранения, внутренней структурой или структурой памяти.

Рассмотрение структуры данных без учета её представления в машинной памяти называется абстрактной или логической структурой. В общем случае между логической и соответствующей ей физической структурами существует различие, степень которого зависит от самой структуры и особенностей той среды, в которой она должна быть отражена. Вследствие этого различия существуют процедуры, осуществляющие отображение логической структуры в физическую и наоборот. Эти процедуры обеспечивают доступ к физическим структурам и выполнение над ними различных операций.

Различаются простые (базовые, примитивные) структуры (типы) данных и интегрированные (структурированные, композитные, сложные). Простыми называются такие структуры данных, которые не могут быть расчленены на составные части, большие, чем биты. Интегрированными называются такие структуры данных, составными частями которых являются другие структуры данных - простые или в свою очередь интегрированные. Интегрированные структуры данных конструируются программистом с использованием средств интеграции данных, предоставляемых языками программирования.

В зависимости от отсутствия или наличия явно заданных связей между элементами данных следует различать несвязные структуры (векторы, массивы, строки, стеки, очереди) и связные структуры (связные списки).

Весьма важный признак структуры данных - её изменчивость - изменение числа элементов или связей между элементами структуры. По признаку изменчивости различают структуры статические, полустатические и динамические. Классификация структур данных по признаку изменчивости приведена на рис. 1.

Рис. 1. Классификация структур данных

Рис. 1. Классификация структур данных

Базовые структуры данных, статические, полустатические и динамические характерны для оперативной памяти и часто называются оперативными структурами. Файловые структуры соответствуют структурам данных для внешней памяти.

Второй важный признак структуры данных - характер упорядоченности её элементов. По этому признаку структуры можно делить на линейные и нелинейные структуры. В зависимости от характера взаимного расположения элементов в памяти, линейные структуры можно разделить на структуры с последовательным распределением элементов в памяти (векторы, строки, массивы, стеки, очереди) и структуры с произвольным связным распределением элементов в памяти (односвязные, двусвязные списки). Пример нелинейных структур - многосвязные списки, деревья, графы.

В языках программирования понятие "структуры данных" тесно связано с понятием "типы данных". Любые данные, т.е. константы, переменные, значения функций или выражения, характеризуются своими типами.

Информация по каждому типу однозначно определяет:

1) структуру хранения данных указанного типа, т.е. выделение памяти и представление данных в ней, с одной стороны, и интерпретирование двоичного представления, с другой;

2) множество допустимых значений, которые может иметь тот или иной объект описываемого типа;

3) множество допустимых операций, которые применимы к объекту описываемого типа.

 

3. Характеристики основных типовых структур

3.1 Линейные и нелинейные

Все структуры данных можно подразделить на линейные и нелинейные. Отличия в том, что у линейных все элементы структуры расположены на одном уровне, у нелинейных – на нескольких уровнях.

Структуры данных также можно разделить на два больших класса по признаку физического размещения в памяти:

1) физически последовательные структуры, или просто последовательные структуры данных (ПДС);

2) структуры с произвольным размещением элементов.

Среди структур данных с произвольным размещением элементов, прежде всего, выделяются списковые структуры данных (ССД), или просто списки. К линейным структурам данных относятся ПДС и простые списки, они также называются строками, или строчными структурами.

ПДС реализуют естественное отношение порядка на множестве данных в среде хранения: «следующий» означает расположенный в памяти непосредственно вслед за предыдущим. Если этот естественный порядок совпадает с логическим отношением порядка на множестве элементов данных (чаще всего, когда у элементов данных выделяются ключевые атрибуты, он устанавливается в соответствии со значениями ключа), то такие разновидности ПДС называют упорядоченными (сортированными), если не совпадает – неупорядоченными. Служебная информация для описания ПДС обычно содержит сведения о количестве элементов множества данных, размерах (длине) элементов, о расположении ключа или ключей (если элементами являются записи) и их размерах, адресе первого элемента множества данных, и другие.

В зависимости от разнообразия длин данных и способа указания длины записи ПДС подразделяются на следующие разновидности:

  • ПДС с фиксированной длиной элементов;
  • ПДС с элементами переменной длины;
  • ПДС с элементами неопределённой длины.

Данные фиксированной длины имеют одинаковую заранее известную длину и обеспечивают прямой доступ к каждому элементу, адрес которого вычисляется. Элементы длины у которых указаны явно ( например, специальными служебными полями в специальной служебной записи), называются ПДС с элементами переменной длины. Если вместо явного указания длины используется заранее установленный символ (разделитель), указывающий на конец элемента данных, то  ПДС называются - ПДС с элементами неопределённой длины.

Особая разновидность ПДС – очереди. В них для пользователя (при обращении к ПДС за данными или при добавлении новых данных) доступен только первый или (и) последний элемент данных. Вся остальная служебная информация скрыта от него и доступна только управляющей очередями программе. Разновидности очередей определяются конкретным вариантом доступного для поступления и доступного для обработки элемента. Наиболее распространены следующие разновидности очередей:

  • магазин или стек – соответствует принципу «первый вошёл, последний вышел»;
  • очередь (т.е. очередь в узком смысле в отличие от всей совокупности этого подкласса ПДС), соответствует принципу «первый вошёл, первый вышел»;
  • дек – двусторонняя очередь, структура, позволяющая добавлять и извлекать элементы, как в начале, так и в конце последовательности данных.

 

3.2 Списковые структуры данных

Списковые структуры данных – это множество физически не связанных элементов, для которых отношение следования определено с помощью специальных адресов связи. В адресе связи указывается адрес элемента, следующего в логическом порядке хранения за данным элементом.

Элементы ССД могут быть двух типов: простые, логически не делимые (их называют подсписками) или сложные – совокупность простых и сложных меньшого объёма. В простые ССД (строки или цепи) входят только простые элементы. В сложные ССД входят и простые, и сложные элементы.

Каждый элемент ССД содержит собственную информацию – значение элемента и ассоциативную информацию – адреса связи с другими элементами структуры, которые объединяются в звенья связи.

Возможно совместное и раздельное размещение в памяти собственной и ассоциативной информации.

По виду взаимосвязи элементов различают однонаправленные, двунаправленные и кольцевые списковые структуры:

  • В однонаправленных списках реализуется взаимосвязь между элементами типа «следующий». Каждый элемент такого списка содержит указатель с адресом следующего элемента. Последний элемент имеет в указателе вместо адреса связи специальный знак – признак конца списка. Указатель списка содержит адрес его первого элемента. Длязадания однонаправленной списковой структуры требуется следующая ассоциативная информация:

- указатель списка с адресом первого элемента;

- звено связи элементов, в которых для простого элемента содержаться адрес следующего элемента списка и адрес значения элемента, а для сложного элемента – адрес следующего элемента списка и адрес первого элемента подсписка.

  • Двунаправленные списки ориентированы на обработку, как в прямом, так и в обратном направлении. Для этого в звенья связи дополнительно вводится адрес, реализующий связь типа «предыдущий». Для задания двунаправленной списковой структуры необходима ассоциативная информация:

- указатель списка, содержащий адрес первого и последнего элементов;

- звенья связи элементов, для простого элемента это звено содержит адреса

предыдущего и последующего элементов, а также адрес значения элемента, для сложного элемента в звене связи содержится адрес последующего и предыдущего элементов списка и адреса первого и последнего элемента подсписка.

  • Кольцевой называется такая списковая структура, элементы которой могут быть просмотрены в циклической последовательности заданное число раз. Кольцевые структуры также могут быть, как однонаправленными, так и двунаправленными, могут быть простыми (строчными) и сложными (редко используются на практике). Для задания однонаправленной простой кольцевой структуры необходимо иметь ассоциативную информацию:

- указатель строки, который содержит адрес указателя начала кольца;

- указатель начала кольца, который хранит константу N – число просмотров строки, и адрес первого элемента строки;

- звенья связи элементов, содержащие адрес последующего элемента и адрес значения элемента, звено связи последнего элемента вместо признака конца списка содержит адрес указателя начала кольца.

При каждом просмотре кольца значение N уменьшается на единицу и проверяется условие N=0. Если N≠0,просмотр продолжается; при N=0 просмотр заканчивается. Двунаправленная кольцевая строка отличается от однонаправленной тем, что вместо указателя начала кольца вводятся два указателя со своими константами – это указатель начала прямого направления и указатель начала обратного направления со своими константами чисел просмотра

N1 и N2. Кроме того, звенья связи содержат адреса предыдущего и последующего элементов.

 

3.3 Древовидные (иерархические) структуры данных

Элементы древовидных структур данных (ДСД) располагаются на различных уровнях и соединяются с помощью адресов связи. ДСД  соответствует графу типа «дерево» и представляется набором элементов, распределённых

по уровням иерархии следующим образом:

На первом уровне расположен только один элемент, который называется корнем дерева; к любому элементу k-го уровня ведёт только один адрес связи; к любому элементу k-го уровня адрес связи идёт только от элемента(k-1)-го уровня.

Количество уровней в ДСД называют рангом. Элементы дерева, которые адресуются от общего элемента (k-1)-го уровня, образуют группу. Максимальное число элементов в группе называется порядком дерева. Деревья с порядком больше двух принято называть общими ДСД, а с порядком 2 − двоичными, или бинарными деревьями. Дерево порядка 1 – строчная структура.

В зависимости от количества элементов в группе некоторой вершины различают три типа вершин. Если n – порядок дерева, то вершины из n элементов называются полными, вершины, не имеющие группы – концевыми (листьями), а остальные неполными.

Для ДСД можно определить её двунаправленный и кольцевоё варианты. Если в однонаправленном варианте некоторая вершина А имеет адрес связи на вершину В, то в двунаправленном дереве дополнительно появится адрес связи от В к А. Если все концевые вершины дерева имеют адрес связи на вершину-корень, то ДСД называется кольцевой.

Наиболее  распространённым видом ДСД являются бинарные деревья, в которых каждая вершина  k-го уровня содержит два адреса (правый и левый) связи на вершины (k+1)-го уровня и один (обратный) – на вершину  (k-1)-го уровня. Множество вершин, соединённых с данной вершиной через левый адрес связи, образует левую ветвь этой вершины. Аналогично определяется правая ветвь.

В случае, когда элементы дерева являются записями, наиболее распространённым условием организации бинарных деревьев является упорядоченность. Записям соответствуют ключи с числовыми значениями. Каждый элемент в упорядоченном бинарном дереве (УБД) имеет на своей левой ветви элементы с меньшим, чем у него, значением ключа, а на правой ветви - элементы с большим или равным значением ключа.

Имеются специальные разновидности бинарных деревьев, у которых размах расстояния Д от корня дерева до концевых вершин сравнительно невелик: подравненные и выровненные (в частном случае – симметричные). Алгоритмы формирования таких деревьев более сложные, чем общий алгоритм формирования УБД.

Для общих ДСД часто используется разновидность: В-деревья (сбалансированные деревья) со специальным алгоритмом их формирования. В алгоритме формирования УБД дерево растёт вниз и его корень не меняется, а в алгоритме формирования В-дерева оно растёт вверх и его корень может меняться.

 

3.4 Сетевые структуры данных

Сетевые структуры данных представляют собой расширение дерева за счёт новых адресов связи на множестве элементов.

 

3.5 Табличные структуры данных

Табличная структура данных – структура, в которой адрес данного однозначно определяется двумя числами – номером стоки и номером столбца, на пересечении которых находится ячейка с искомым элементом. Табличные структуру предназначены для хранения информации о ключевых атрибутах заданного набора элементов, являющихся записями. Обычно это делают с выделением в памяти трёх областей:

  • вектора описания записей;
  • вектора описания ключей;
  • матрицы значений ключей.

Отсутствие некоторых ключевых атрибутов приводит к незаполненным позициям в матрице значений ключей. Чтобы устранить их, используются специальные способы уплотнения (с помощью логической шкалы или индексных пар). Таким образом, выделяются уплотнённые и неуплотнённые табличные структуры.

Гибридные структуры данных содержат фрагменты двух различных структур данных. Например, небольшие по объёму последовательные структуры данных соединяются между собой с помощью адресов связи в строчную структуру. Гибридные структуры данных различаются в зависимости от того, какие структуры данных используются при их формировании.

В различных процедурах работы с данными выгодно использование наиболее эффективных для решаемых задач структур. При размещении элементов массивов или записей в памяти обычно используются ПСД, при организации индексных файлов в методах доступа к  данным – ДСД или табличные структуры, для организации скоростных буферов обмена – очереди, и так далее.

 

Заключение

Структура данных – это организационная схема записи или массива, в соответствии с которой упорядочены данные, с тем, чтобы их можно интерпретировать и выполнять над ними определённые операции. Это исполнитель, который организует работу с данными, включая их хранение, добавление и удаление, модификацию, поиск. Структура данных поддерживает определённый порядок доступа к ним. Понятие структуры данных можно определить, как совокупность внешних связей между элементами данных, которые на принятом уровне рассмотрения можно считать неделимыми, элементарными. Существуют следующие основные типы структур данных: списковые, древовидные или иерархические, сетевые, табличные.

Списковые структуры и табличные структуры являются простыми. Ими легко пользоваться, поскольку адрес каждого элемента задается числом (для списка), двумя числами (для двумерной таблицы) или несколькими числами для многомерной таблицы. Они также легко упорядочиваются. Основным методом упорядочения является сортировка. Данные можно сортировать по любому избранному критерию, например: по алфавиту, по возрастанию порядкового номера или по возрастанию какого-либо параметра.

Несмотря на удобства, у простых структур данных есть и недостаток — их трудно обновлять. Пример: переводим студента из одной группы в другую, изменения надо вносить сразу в два журнала посещаемости; при этом в обоих журналах будет нарушена списочная структура. Если переведенного студента вписать в конец списка группы, нарушится упорядочение по алфавиту, а если его вписать в соответствии с алфавитом, то изменятся порядковые номера всех студентов, которые следуют за ним.

Таким образом, при добавлении произвольного элемента в упорядоченную структуру списка может происходить изменение адресных данных у других элементов, в системах, выполняющих автоматическую обработку данных, нужны специальные методы для решения этой проблемы. Древовидные (иерархические) структуры данных по форме сложнее, чем списковые структуры данных и табличные, но они не создают проблем с обновлением данных. Их легко развивать путем создания новых уровней.

Недостатком иерархических структур является относительная трудоемкость записи адреса элемента данных и сложность упорядочения. Часто методы упорядочения в таких структурах основывают на предварительной индексации, которая заключается в том, что каждому элементу данных присваивается свой уникальный индекс, который можно использовать при поиске, сортировке и т. п.

Адресные данные, если данные хранятся не как попало, а в организованной структуре (причем любой), то каждый элемент данных приобретает новое свойство (параметр), который можно назвать адресом.  Работать с упорядоченными данными удобнее, но за это приходится платить их размножением, поскольку адреса элементов данных — это тоже данные, и их тоже надо хранить и обрабатывать.

Мы рассмотрели вопрос о важности структур данных и о том, как они влияют на эффективность алгоритмов. Выбор правильного представления данных служит ключом к удачному программированию и может в большей степени сказываться на производительности программы, чем детали используемого алгоритма.

Стоит добавить, что совокупность структур данных и операций их обработки составляет модель данных, которая является ядром любой базы данных и представляет собой множество структур данных, ограничений целостности и операций манипулирования данными. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними. База данных основывается на использовании иерархической, сетевой или реляционной модели, на комбинации этих моделей или на некотором их подмножестве.

 

Практическая часть

1. Общая характеристика задачи

Рассмотрим следующую задачу:

В бухгалтерии ООО «Снежок» производится расчет отчислений по каждому сотруднику предприятия:

  • в федеральный бюджет;
  • фонды обязательного медицинского страхования (ФФОМС – федеральный, ТФОМС – территориальный);
  • фонд социального страхования (ФСС).

Процентные ставки отчислений приведены на рис. 6.1. Данные для расчета отчислений в фонды по каждому сотруднику приведены на рис. 6.2.

  1. Построить таблицы по приведённым ниже данным.
  2. Выполнить расчёт размеров отчислений с заработной платы по каждому сотруднику предприятия, данные расчета занести в таблицу (рис.6.2).
  3. Организовать межтабличные связи для автоматического формирования ведомости расчета ЕСН (единого социального налога) по предприятию.
  4. Сформировать и заполнить ведомость расчета ЕСН (рис 6.3).
  5. Результаты расчета ЕСН по каждому сотруднику за текущий месяц представить в графическом виде.

СТАВКИ ЕСН

Фонд,

В который производится

отчисление

Ставка, %

ТФОМС

2,00

Федеральный бюджет

20,00

ФСС

3,20

ФФОМС

0,80

ИТОГО

26,00

Рис. 6.1. Процентные ставки отчислений

Табельный номер

ФИО

сотрудника

Начислено за

Месяц, руб.

Федеральный

Бюджет, руб.

ФСС, руб.

ФФОМС, руб.

ТФОМС, руб.

Итого, руб.

001

Иванов И.И.

15 600,00

 

 

 

 

 

002

Сидоров А.А

12 300,00

 

 

 

 

 

003

Матвеев К.К.

9 560,00

 

 

 

 

 

004

Сорокин М.М.

4 620,00

 

 

 

 

 

005

Петров С.С.

7 280,00

 

 

 

 

 

Рис. 6.2. Данные для расчета ЕСН за текущий месяц по каждому сотруднику

ООО «Снежок»

Расчетный период

с

по

__.__.200_

__.__.200_

 

ВЕДОМОСТЬ РАСЧЕТА ЕСН

Табельный номер

ФИО

сотрудника

Федеральный

Бюджет, руб.

ФСС, руб.

ФФОМС, руб.

ТФОМС, руб.

Итого, руб.

001

Иванов И.И.

 

 

 

 

 

002

Сидоров А.А

 

 

 

 

 

003

Матвеев К.К.

 

 

 

 

 

004

Сорокин М.М.

 

 

 

 

 

005

Петров С.С.

 

 

 

 

 

ВСЕГО ПО ВЕДОМОСТИ

 

Рис. 6.3. Ведомость расчета ЕСН

 

2. Описание алгоритма решения задачи смотрте в файле

 

Список использованной литературы

  1. Гуда А. Н., Бутакова М. А., Нечитайло Н. М., Чернов А.В. Информатика. Общий курс: Учебник / Под ред. академика РАН В. И. Колесникова. – М.: Издательско-торговая корпорация «Дашков и К»; Ростов н/Д: Наука-Пресс, 2007г. – 400 с.
  2. «Информатика. Терминологический словарь». Всероссийский НИИ комплексной информации по стандартизации и качеству; Москва, 2005г. – 350 с.
  3. «Информатика, общий курс» под ред. Колесникова В.И. Наука-Пресс. Москва, 2007г. – 315 с.
  4. Каймин В. А. Информатика: Учебник. - М.: ИНФРА-М, 2000г. - 232 с.
  5. Когаловский М.Р. «Энциклопедия технологий баз данных» Финансы и статистика; Москва, 2004г. – 195 с.
  6. Модели и структуры данных В. Д. Далека, А. С. Деревянко, О. Г. Кравец, Л. Е. Тимановская. Учебное пособие. Харьков: ХГПУ, 2000г. - 241с.
  7. Организация и обработка структур данных в вычислительных систем: Учебное пособие для вузов. Костин А.Е., Шаньгин В.Ф. 1987г. - 248 с.
  8. Соболь Б.В., Галин А.Б., Панов Ю.В., Рашидова Е.В., Садовой Н.Н. «Информатика»; Ростов н/Д: Феникс, 2005г. – 145 с.
  9. Советов Б. Я. Информационные технологии. Учебник для студентов вузов. 2006г. - 263 с.
  10. Уоллес Вонг. Основы программирования для «чайников». ДИАЛЕКТИКА. Москва – Санкт-Петербург – Киев. 2001г. – 335 с.

Публикации в сети Интернет

  1. Савчук В.Л. Виды форм представления информации.- http://www.ie.tusur.ru/books/COI/page_03.htm 13.03.2010г.

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Бесплатная оценка

0
Размер: 365.98K
Скачано: 385
Скачать бесплатно
05.10.10 в 22:46 Автор:

Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).


Чтобы скачать бесплатно Курсовые работы на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Курсовые работы для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.


Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Добавить работу


Если Курсовая работа, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.


Добавление отзыва к работе

Добавить отзыв могут только зарегистрированные пользователи.


Похожие работы

Консультация и поддержка студентов в учёбе