Главная » Бесплатные рефераты » Бесплатные рефераты по концепции современного естествознания »
Тема: Квантово - механическая концепция описания микромира
Раздел: Бесплатные рефераты по концепции современного естествознания
Тип: Контрольная работа | Размер: 26.23K | Скачано: 306 | Добавлен 18.10.10 в 18:30 | Рейтинг: +3 | Еще Контрольные работы
Введение.
Микромир – это мир предельно малых, непосредственно не наблюдаемых микрообъектов. (Пространственная размерность которых исчисляется значениями от 10-8 до 10-16 см, а время жизни – от бесконечности до 10-24с.)
Квантовая механика (волновая механика) – это теория, устанавливающая способ описания и законы движения физических систем и объектов на микроуровне.
Законы квантовой механики составляют фундамент наук о строении вещества. Днем рождения квантовой механики считается 14 декабря 1900 года, именно в этот день Планк обнаружил квантовость энергии.
А появилась она из за противоречий, возникающих при подходе в свете классической физики к попытке объяснить такие явления, как радиоактивный распад, дифракция, испускание спектральных линий. Задачей классической физики было описание объектов в пространстве и создание законов, управляющих их изменениями во времени. В квантовой механике можно лишь утверждать, что есть определенная вероятность того, что объект таков и имеет такое то свойство. В квантовой механике нет места для законов, управляющих изменениями отдельного объекта во времени.
Для классической механики характерно описание частиц путем задания их положения и скоростей и зависимости этих величин от времени. В квантовой механике одинаковые частицы в одинаковых условиях могут вести себя по разному.
«Изложите сущность квантово – механической концепции описания микромира»
Физическими основами квантово – механической концепции описания микромира стали:
Корпускулярно – волновой дуализм – это всеобщее и универсальное свойство материи, согласно которому любой вид материи, будь то тело или поле, обладает как корпускулярными, так и волновыми свойствами. Всеобщим признание корпускулярно – волонового дуализма стало после экспериментального обнаружения в 1927 году дифракции электронов американскими физиками К. Девиссоном и Л. Джермером, их эксперимент послужил доказательством гипотезы Л. де Бройля, который первым высказал смелую мысль о всеобщем дуализме частицы и материи.
В настоящее время наличие у частиц волновых свойств доказано в огромном числе экспериментов. Интерференция и дифракция наблюдались, помимо электронов, для нейтронов, атомных ядер, атомов и молекул. Теория движения микрочастиц с необходимостью должна учитывать наличие у них волновых свойств. Это с неизбежностью ведет к отказу от некоторых классических представлений, сформировавшихся в результате наблюдения движения макроскопических тел. В частности наблюдение волновых явлений несовместимо с представлением о движении частицы по определенной классической траектории, как и не совместимы форма частицы, подразумевающая сущность, заключенную в малом объема или конечной области пространства, и волна, распространяющаяся по огромным областям того же пространства.
Для того чтобы устранить противоречие между корпускулярным и волновым описанием явлений (существующее в рамках классических представлений о частицах, как материальных точках, движущимся по определенным траекториям), оказывается необходимым специальный постулат – так называемый принцип суперпозиции состояний. Этот принцип позволяет описать волновые явления в терминах корпускулярных представлений ценой отказа от некоторых понятий, взятых из макроскопических опытов и неприменимых к микропроцессам в квантовой области. Тем самым принцип суперпозиции лежит в основе физического содержания Квантовой механики. По смыслу суперпозиция состояний принципиально отличается от суперпозиции полей или волн. В то время как суперпозиция двух колебаний имеет наглядный смысл и соответствует реальному сложению двух возможных колебаний, суперпозиция состояний содержит альтернативные состояния одной и той же частицы. То есть находится в нескольких (по отношению к выбранной системе отчета) альтернативных состояниях. Это является отказом от наглядных классических представлений о частицах, как о материальных точках, движущихся по определенным траекториям. Необходимость такого отказа диктуется корпускулярно – волновым дуализмом, который следует принять как первичное свойство материи. При этом только вероятностная интерпретация двух альтернативных состояний позволяет избежать логического противоречия, так как, согласно этой интерпретации, в каждом отдельном эксперименте частица с определенной вероятностью может быть обнаружена лишь в одном из этих состояний. Итак, «конечное» состояние системы определяется не однозначно, а соответствует суперпозиции всех альтернативных состояний системы.
Окончательное формирование квантовой механики как последовательной теории происходило благодаря работам немецкого физика В. Гейзенберга, установившего принцип неопределенности и датского физика Н. Бора, сформулировавшего принцип дополнительности, на основании которых описывается поведение микрообъектов.
Суть соотношения неопределенностей В. Гейзенберга заключается в следующем. Допустим, ставится задача определить состояние движущейся частицы. Если бы можно было воспользоваться законами классической механики, то ситуация была бы простой: следовало лишь определить координаты частицы и ее импульс. Но законы классической механики применяться не могут: невозможно не только практически, но и вообще с одинаковой точностью установить место и величину движения микрочастицы. Только одно из этих двух свойств можно определить точно. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И наоборот, при точном измерении скорости нельзя определить место расположения частицы.
С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Человек в принципе не способен построить наглядную модель, которая была бы адекватна микромиру. Соотношение неопределенностей есть выражение невозможности наблюдать микромир, не нарушая его. Любая попытка дать четкую картину микрофизических процессов должна опираться либо на корпускулярное, либо на волновое толкование. При корпускулярном описании измерение проводится для того, чтобы получить точное значение энергии и величины движения микрочастицы, например, при рассеивании электронов. При экспериментах, направленных на точное определение места, напротив, используется волновое объяснение, в частности, при прохождении электронов через тонкие пластинки или при наблюдении отклонения лучей.
Существование элементарного кванта действия служит препятствием для установления одновременно и с одинаковой точностью величин «канонически связанных», то есть положения и величины движения частицы.
Фундаментальным принципом наряду квантовой механики наряду с соотношением неопределенностей является принцип дополнительности, которому Н. Бор дал следующую формулировку: «понятия частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего».
Противоречия корпускулярно – волновых свойств микрообъектов являются результатом неконтролируемого взаимодействия микрообъектов и макроприборов. Имеется два класса приборов: в одних квантовые объекты ведут себя как волны, в других – подобно частицам. В экспериментах мы наблюдаем не реальность как таковую, а лишь квантовое явление, включающее результат взаимодействия прибора с микрообъектом. М. Борн образно заметил, что волны и частицы – это «проекции» физической реальности на экспериментальную ситуацию.
Ученый, исследующий микромир превращается, таким образом, из наблюдателя в действующее лицо, поскольку физическая реальность зависит от прибора, то есть, в конечном счете, от произвола наблюдателя.
Отказ от полностью детерминированного описания движения отдельной частицы и переход к вероятностному описанию, адекватному принципу суперпозиции состояний позволяет совместить волновые и корпускулярные свойства материи. Вероятностное описание, таким образом, отвечает фундаментальным свойствам движения микрообъектов и не связано с какой – либо неполнотой сведений о них. Предсказание поведения микрообъектов осуществляется при помощи волновой функции Шредингера.
«Объясните взгляды М. Планка, Луи де Бройля, Э. Шредингера, В. Гейзенберга, Н. Бора и др. на природу микромира».
Первый шаг в направлении зарождения квантовой механики сделал немецкий физик М. Планк. Известно, что он, проанализировав условия, при которых так называемое излучение абсолютно черного тела должно находится в равновесном состоянии, установил связь энергии и частоты света. Наличие такой связи удивляло физиков, поскольку она была необычной в аспекте классической физики, согласно которой энергия волны связана с ее амплитудой, а не частотой.
В первые годы эту связь никто не трактовал глубоко, экспериментаторы не проявляли к ней интереса, считая ее "инструментом теоретиков", полезным лишь для того, чтобы свести концы с концами в каком то сугубо теоретическом вопросе о распределении энергии в спектре излучения абсолютно черного тела. Теоретиков эта странная связь беспокоила, потому что вместе с ней появились идеи о квантовости энергии, но никто не знал, как это понимать. Теоретики не шли далее того, чтобы представить себе механизм, посредством которого осциллятор может испускать и поглощать только определенные порции энергии. Особенные проблемы возникали при отыскании механизма поглощения, поскольку все еще исходили из представления, что энергия на осциллятор падает непрерывно: по видимому, каким то образом должна была накапливаться, прежде чем быть поглощенной. Никто из физиков, в том числе и сам Планк не подозревал, что из открытия обобщенной формулы излучения абсолютно черного тела могут последовать революционные идеи, которые раскроют перед физикой совершенно новые горизонты. Планк же считал необходимостью "остаться на почве классических представлений Максвелла и не идти дальше, ограничиться своеобразием механизма излучения, допускать, если это окажется неизбежным, своеобразие в поглощении света электроном и ряд других частных гипотез, но не порывать с теорией электромагнитного поля и не посягать на самый свет".
Первым физиком, который восторженно принял открытие элементарного кванта действия, был А. Энштейн. Он первым осознал основополагающее значение квантовых идей и стал рассматривать ряд известных к тому времени затруднений классической физики, но уже в свете новых квантовых представлений. Он рассмотрел явление фотоэффекта и нашел, что оно получает простое и непротиворечивое объяснение, если предположить что сам световой поток представляет собой поток квантов, несущих энергию, пропорциональную частоте, как это и соответствует планковскому кванту энергии. Тогда ясно, что энергия, переданная квантом света свободному электрону пластинки, будет зависеть не от яркости света, а именно от его частоты. Найденное ранее Планком соотношение получило в работах Эйнштейна ясный смысл: взаимодействие света с веществом, в процессе которого вещество поглощает или испускает квант энергии, определяется квантовой структурой самого света, тем, что сам световой поток состоит из потока световых квантов.. При этом объяснении отпадает необходимость придумывать для атома специальный механизм, регулирующее испускание и поглощение световой энергии квантами: сама световая энергия прерывна.
Также Эйнштейн применил квантовые идеи для объяснения правила смещения Стокса в люминесценции, а также к фотоионизации газа; он показал, что во всех подобных явлениях происходит превращение кинетической энергии электрона в световой квант или наоборот. Во всех процессах взаимосвязи электронов и света передаваемая энергия излучения пропорциональна частоте и постоянной Планка.
Вообще именно Эйнштейн расширил применение квантовых идей, показав их определяющую роль в атомной физике. Квантовая теория света А. Эйнштейна, утверждала, что свет есть постоянно распространяющееся в мировом пространстве волновое явление. И вместе с тем световая энергия, чтобы быть физически действенной, концентрируется лишь в определенных местах, поэтому свет имеет прерывную структуру.
Развивая представления М. Планка и А. Эйнштейна, французский физик Луи де Бройль в 1924 году выдвинул идею о волновых свойствах материи. В своей работе "Свет и материя" он писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи.
Луи де Броль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам. Смелая мысль Луи де Бройля о всеобщем "дуализме" частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве.
Волны материи, которые первоначально представлялись как наглядно-реальные волновые процессы по типу волн акустики, приняли абстрактно - математический облик и получили благодаря немецкому физику М. Борну, символическое значение как "волны вероятности".
В. Гейзенберг делает такой вывод: "В экспериментах с атомными процессами иы имеем дело с вещами и фактами, которые столь же реальны, сколь реальны любые явления повседневной жизни. Но атомы или элементарные частицы реальны не в такой степени. Они образуют скорей мир тенденций или возможностей, чем мир вещей и фактов"
Бор писал в "Воспоминаниях о Резерфорде..."Это открытие, в особенности в рамках Эйнштейна, нашло весьма перспективные приложения в теории теплоемкостей и фотохимических реакций. Поэтому совершенно независимо от новых экспериментальных данных, касающихся строения атома, существовало широко распространенное убеждение в том, что квантовые представления могут иметь решающее значение для всей проблемы атомного строения вещества". Усилия Н. Бора были направлены на то, чтобы сохранить за обоими наглядными представлениями, корпускулярным и волновым, одинаковое право на существование, причем он пытался доказать, что хотя эти представления, возможно, исключают друг друга, однако они лишь вместе делают возможным полное описание процессов в атоме.
«Особенности волновой генетики».
В последние десятилетия начали постепенно выявляться некоторые кризисные явления в молекулярной биологии и биологии развития. После открытия структуры ДНК и детального рассмотрения участия этой молекулы в генетических процессах основная проблема феномена жизни - механизмы ее воспроизведения - осталась в своей сути не раскрытой. Отсюда ограниченность арсенала технических и биотехнических средств управления ростом и развитием биосистем. Наметился явный разрыв между микроструктурой генетического кода и макроструктурой биосистем.
Идеи русских биологов Гурвича, Любищева и Беклемишева - гигантское интеллектуальное достижение, намного опередившее свое время. Суть их мыслей в триаде:
1. Гены дуалистичны - они вещество и поле одновременно.
2. Полевые эквиваленты хромосом размечают пространство-время организма и тем самым управляют развитием биосистем.
3. Гены обладают эстетически-образной и речевой регуляторными функциями.
Современные молекулярная биология, генетика и эмбриология, проделав большой путь развития, завершили определенный виток в понимании сущности жизни. Оно было сугубо материалистичным, точнее, вещественным. Гены в этом смысле - только вещество. И когда это вещество - ДНК - детально изучили, открыв так называемый генетический код, то оказалось, что этого явно мало. Ключевая проблема биологии - преемственность поколений, наследственность, эмбриогенез - не раскрыта, более того, в тупике, правда более высокого ранга.
Возникла настоятельная необходимость в теоретическом развитии идеи волнового генома, в физико-математическом и теоретико-биоло-гическом осмыслении работы хромосом и ДНК в полевом и вещественном аспектах. Первые попытки решить эту задачу предприняли П.П.Гаряев и А.А.Березин (Отдел теоретических проблем РАН), а также А.А.Васильев (Физический институт РАН). В основу их представлений были положены принципы когерентных физических излучений, голографии и солитоники, теория физического вакуума, фрактальные отображения структур ДНК и человеческой речи. Суть идей Гаряева - Березина - Васильева “ГБВ-модель” состоит в том, что геном высших организмов рассматривается как солитонный биоголографический компьютер, формирующий пространственно-временную структуру развивающихся эмбрионов по каскадам реестров волновых образов-предшественников. При этом в качестве носителей полевых генов выступает континуум волновых фронтов, задаваемый мультиплексными геноголограммами, образуемыми гелевым жидкокристаллическим хромосомным континуумом. Акт “считывания” информации осуществляют сами же хромосомы, генерирующие лазерные свет и звук в широких диапазонах. Близкую роль играют также и солитоны на ДНК - особый вид акустических и электромагнитных полей, продуцируемых генетическим аппаратом самого организма и способных к посредническим функциям по обмену стратегической регуляторной информацией между клетками, тканями и органами биосистемы. Важно также и то, что квази-голографические решетки, в том числе входящие в состав колебательных структур солитонов, являются лишь частным простейшим случаем кодово-образной информации, зафиксированной в хромосомном континууме организма. Мультиплетнокодовая ДНК, где аминокислотный код - только малая часть, и “эгоистическая ДНК” хромосом анализируются в рамках ГБВ-модели как потенциальный стратегический информационный вектор всех клеток и тканей организма, включая кору головного мозга. Геном работает не только на вещественном, но и на волновом, на “идеальном” (тонкоматериальном) уровне. Эта идеальная компонента, которую можно назвать супергено-континуумом, и является главной знаковой фигурой генома, обеспечивающей развитие и жизнь человека, животных, растений, а также их программируемое естественное умирание. Вместе с тем важно понять, что нет резкой и непреодолимой границы между волновыми и материальными уровнями хромосом. Оба они образуются вещественными матрицами, но гены дают материальные реплики в виде РНК и белков, а супергены преобразуют падающие на них эндо- и экзогенные физические поля, формируя из них пространственно-временные разметочные волновые структуры. Более того, гены могут быть составной частью голографических решеток супергенов и регулировать их полевую активность. И наконец, супергены могут формироваться как ДНК-РНК-нуклеопротеид-лазерное поле, промодулированное их текстами.
Особого внимания заслуживает в ГБВ-модели обоснование единства фрактальной (повторяющей самою себя в разных масштабах) структуры последовательностей ДНК и человеческой речи. То, что четыре буквы генетического алфавита (Аденин, Гуанин, Цитозин, Тимин) в ДНК-текстах образуют геометрические фрактальные структуры, конста-тировано Джефри в 1990г. в рамках так называемого “хаотически-игрового” математического представления последовательностей нуклеотидов. Это не вызвало особой реакции научной общественности. Однако, обнаружение нами геноподобных фрактальных (в геометрическом аспекте) структур в человеческой речи, и не только в буквенных рядах русских и английских текстов, но и в последовательностях слов этих текстов методически нетривиально. Хотя сама идея фрактальности естественных текстов не нова, но это идея смысловой фрактальности. В целом, такой ход мысли созвучен направлению в семиотике, называемому “лингвистическая генетика”, направлению, которое пытается объяснить некоторые, похоже общие закономерности создания гибридов биосистем и “гибридов” слов. Становится понятнее принятое, и уже привычное, опережающее сравнение ДНК с естественными текстами, имевшее преимущественно метафорический характер. Мы разработали модель фрактального представления естественных (человеческих) и генетических языков, которая позволяет предположительно считать, что “квазиречь” ДНК обладает потенциальным неисчерпаемым запасом “слов”. В этом пункте мы существенно расходимся с известными представлениями об исключительно трехбуквенном шифровании молекулой ДНК и только последовательностей аминокислот в белках. Предлагаемая фрактальная модель может стать полезной для тонкого количественного и смыслового сравнения знаковой структуры любых текстов, в том числе генетических. Можно попытаться подойти к дешифровке семантических построений ДНК и, соответственно, к составлению алгоритмов речевого или квазиречевого обращения к геному любой биосистемы через аппаратуру, моделирующую знаково-волновые функции генетического аппарата. Первичная практическая проверка ГБВ-модели в области “речевых” характеристик ДНК дала положительные результаты. Так же, как и в экспериментах Дзян Каньджэна, был получен эффект прямой трансляции и введения геноволновой информации от донора к акцептору. Затем мы создали устройства - генераторы солитонных полей Ферми-Паста-Улама (ФПУ), в которые можно было вводить речевые алгоритмы, к примеру, на русском и английском языках. Такие вербальные структуры превращались в особые электромагнитные (солитонные) модулированные поля - аналоги тех, которыми оперируют клетки в процессе волновых коммуникаций. Организм и его генетический аппарат в определенных, не совсем понятных, условиях “узнает” такие “волновые фразы” как свои собственные и в ряде случаев поступает в соответствии с введенными человеком извне речевыми управляющими воздействиями. Не исключен также фактор экзобиологического контроля за работой геноструктур через аналогичные коммуникативные каналы. А если быть точным, то этот контроль есть Божественное Начало. Видимо, геном не само-достаточен для управления организацией биосистемы.
Нам удалось получить предварительные результаты по влиянию кодовых вербальных структур, транслируемых через аппаратуру, на геном растений-акцепторов. зафиксирован факт распознавания геномами растений человеческой речи, что коррелирует с идеей лингвистической генетики о глубинном сходстве механизмов словообразования и синтеза речи для хромосом и человеческих языков, соответствует гипотезе существования праязыка людей и перекликается с постулатом структурной лингвистики, по которому все естественные языки имеют глубинную врожденную универсальную грамматику, инвариантную для всех языков. И, вероятно, для языка генома как одного из них. Об этом же говорят широко известные данные о генетическом дефиците хромосом, не позволяющем полностью реализовать программы развития организма в условиях внешней искусственной полевой информационной изоляции. Фильтрация или искажение некоторых (генознаковых) внешних естественных физических полей вызывает уродства и гибель эмбрионов. Это означает, что коммуникации генетических субстратов с экзогенными волновыми знаковыми структурами безусловно необходимы для гармоничного развития организма. Внешние Божественные (или искусственные) волновые сигналы несут дополнительную, а может быть и главную, информацию в геноконтинуум Земли. Такая идея в какой-то мере подтверждается нашими прямыми экспериментами, которые показали, что ДНК в состоянии жидкого кристалла может являться неким подобием антенны для приема сигналов явно искусственного характера, резко отличного от штатных акустических излучений ДНК. Этот факт, возможно фундаментального характера, проявляется в том, что молекулы ДНК в режиме “приема”, длящегося не один час, начинают вести себя аномальным образом, имитируя квази-разумное поведение на уровне нелинейной динамики полимера, что регистрируется методом корреляционной лазерной спектроскопии и прямым наблюдением за броуновским движением молекул. Не исключено, что в этом выявляются высшие регуляторные волновые супергеносигналы, предназначенные для стратегического уп-равления организмами Земли.
Рассмотрение генетических структур как космических волновых антенн хорошо согласуется с идеями Хозе Аргуэльеса относительно генетического кода. Он считает, что последний описывает лишь часть общей картины жизни, и дополнением к нему является свет - лучистая энергия. Это резонансная лучистая инфраструктура - световое тело - входит в диапазон излучения, который управляется кодом Цолькина, гармонического модуля майя. Отслеживая “источник” лучистой энергии, Аргуэльес приходит к мнению, что он является ядром нашей Галактики. Излучаемые им спиральные потоки пульсаций вращаются в прямом и обратном направлениях и представляют собой код, контролирующий самопередающее и самопреобразующее свойства лучистой энергии. Описываемый гармоническим модулем майя галактический код является первоисточником, пропитывающим и наполняющим жизнью код ДНК.
Совсем недавно нам удалось получить еще одно свидетельство в пользу существования волновых генов. Был открыт феномен генерации широкополосного спектра радиополей в диапазоне от килогерц до одного мегагерца молекулами ДНК in vitro в особых условиях. Препараты ДНК возбуждались в специальной резонансной системе He-Ne лазера со специфической модуляцией светового пучка (длина волны - 632,8 нм). Есть основания полагать, что такая система превращения видимой области спектра электромагнитного излучения в радиодиапазон свойственна биосистемам и они используют эти сверхслабые радиоизлучения в качестве носителя волновой (квазиречевой) генетической информации. Феномен генерации радиоволн из красного света оказался универсальным, свойственным и неорганическим веществам, и сейчас он многократно перепроверяется. Однако, уже сейчас зафиксирован особый спектральный состав радиоволн, генерируемых с участием генетических структур. Надо полагать, что обнаружен один из волновых “языков” генома, где субъектами “чтения” и “озвучивания” генотекстов выступают солитонные волны (бризеры) в ДНК.
Еще одно подтверждение нашей трактовки кодовых функций генома получено в 1994г. американскими исследователями. Работая с “кодирующими” и “некодирующими” последовательностями ДНК эукариот (в рамках старых представлений о генах), эта научная группа из Бостона пришла к выводу, противоречащему догме о том, что знаковые функции сосредоточены только в белок-шифрующих участках ДНК. Они применили метод статистического анализа естественных и музыкальных текстов, известный как закон Ципфа-Мандельброта, и принцип избы-точности текстовой информации Шеннона, рассчитываемый как энтропия текстов. В результате они получили, что “некодирующие” районы ДНК более схожи с естественными языками, чем “кодирующие”, и что, возможно, “некодирующие” последователь-ности генетических молекул являются основой для одного (или более) биологических языков. Кроме того, авторами был разработан статистический алгоритм поиска кодирующих последовательностей ДНК, который выявил, что белок-кодирующие участки обладают существенно меньшими дальнодействующими корреляциями по сравнению с зонами, разделяющими эти участки. Распределение ДНК-последовательностей оказалось настолько сложным, что использованные методы переставали удовлетворительно работать уже на длинах, превышающих 103 - 102 пар оснований. Распределение Ципфа-Мандельброта для частот встречаемости “слов” с числом нуклеотидов от 3 до 8 показало большее соответствие естественному языку некодирующих последовательностей по сравнению с кодирующими. Еще раз подчеркнем, что кодирование авторы понимают как запись информации об аминокислотной последовательности, и только. И в этом парадокс, заставивший их заявить, что некодирующие регионы ДНК - это не просто “junk” (в переводе с английского - “мусор”), а структуры, предназначенные для каких-то целей с неясным пока назначением. Дальнодействующие корреляции в этих структурах авторам также непонятны, хотя и обнаружена нарастающая сложность некодирующих последовательностей в эволюции биосистем, что продемонстрировано на примере семейства генов тяжелой цепи миозина при переходе от эволюционно низких таксонов к высоким. Эти данные полностью соответствует нашим идеям о том, что именно “некодирующие” последовательности ДНК, т.е. около 95 - 98 % генома, и являются стратегическим информационным содержанием хромосом. Оно имеет материально-волновую природу и поэтому многомерно и, по своей сути, выступает как ассоциативно-образная лингвистиковолновая программа эмбриологического начала, смыслового продолжения и логического конца любой биосистемы. Поняв это, авторы с ностальгической грустью прощаются со старой и хорошо послужившей моделью генетического кода, не предлагая, правда, ничего взамен.
Еще одна фундаментальная особенность голографии, экстраполированная на биосистему, дает большую ясность в понимании волновых механизмов “самоанализа” биосистемы. Так, открытый Денисюком “принцип относительности в голографии” (доплеровская голография) выявил способность интерферограмм, записывающих движущиеся в трехмерном пространстве объекты, как бы предсказывать их пространственное положение в будущем. Если доплеровская голограмма формируется волной, отраженной от движущегося объекта, то обращенная такой голограммой волна, идя обратным ходом, фокусируется не на сам объект, а несколько впереди его. При этом существенно, что точка фокусировки обращенной волны является в этом случае именно той точкой, в которую переместится объект за время, пока обращенная волна распространится от голограммы до этого объекта. Нет оснований считать, что принцип относительности в голографии не применим к биосистеме, если сама голография уже используется организмом в мозговой памяти. Этот принцип может являться элементом оценки динамики метаболических процессов и “слежения” за движущимися внутриклеточными структурами и за крупномасштабной динамикой морфогенетических тканевых перестроек. Доплеровская система эндогенного биоконтроля дает способ элементарной прекогниции метаболических событий. С этим перекликается другое, близкое описываемым, свойство голограмм. Доказано, что с голограмм возможно считывание сигнальных импульсов с обращенной временной и пространственной структурой и продемонстрировано, что порфириновые компоненты таких важнейших биомолекул как гемоглобин и хлорофилл в полистирольной матрице могут голографически записывать разнесенные во времени лазерные импульсы. При считывании воспроизводится как относительная задержка, так и временная форма записанного сигнала. Таким образом, в принципиальном плане можно представить уже не только внутреннее динамическое пространственное “самоотслеживание” биосистемой самой себя, но и аналогичный контроль за структурой собственного времени с анализом коротких временных отрезков, направленных как в прошлое, так и в будущее.
Работы по обращению временного сигнала голограммой важны и как пример, что средой памяти такого рода могут служить ключевые биомолекулы живых систем. И это не случайно. Фотосинтез (хлорофилл) и дыхание (гемоглобин) - первоистоки жизни на Земле, а структура времени для биосистем также важна для них как структура собственного пространства, и контроль за ними может осуществлять фундаментальный волновой принцип интерференции и дифракции.
Порфирины - не единственный бионоситель голографической памя-ти. Аналогично работает сложный фоточувствительный белок микробных клеток бактериородопсин. Следующим важнейшим бионосителем голо-графической информации является производное коллагена - желатина. Этот субстрат с 1968 года стал классическим объектом для изучения механизмов формирования амплитудных и амплитудно-фазовых голо-графических решеток в различных диапазонах электромагнитных полей. Использование производных коллагена подтверждает обсуждавшуюся выше мысль о том, что система внеклеточных матриксов, структурнофункциональной основой которых является коллаген, работает с использованием собственной памяти на интерферирующие поля и (или) способна к синтезу эпигенознаковых дифракционных решеток типа псевдоголограмм без участия интерферирующих полей.
Не исключено, что в клетках и тканях используется тепловой диапазон эндогенных полей для автосканирования и записи. Известно, что для записи на желатине используется ИК-СО лазер (длина волны 10,6 мкм), который вызывает в ней локальные необратимые конформационные переходы типа спираль-клубок, связанные со структурными состояниями гидратационной воды. Существенным свидетельством правильности голографической парадигмы, кроме наших исследований, служат работы Будаговского и Евсеевой, показавших в прямых экспериментах возможность дистантной трансляции биологически активного морфогенетического голографического сигнала с растения-донора на каллусную ткань растения-акцептора близкого вида.
Возможно, неким приближением к тому, что происходит в биосистеме и коррелирует с упоминавшимися работами, служат также исследования, в которых обнаружено, что гели коллагена обладают способностью каномально долгому затуханию собственных макроконформационных колебаний, давая при этом повторяющиеся, но разноплановые фурье-спектры, что нами подтверждено и развито в теоретическом и экспериментальном планах не только для коллагена, но и для ДНК и рибосом. Этот феномен, возможно, связан с солитонообразованием на информационных биополимерах в форме явления возврата Ферми-Паста-Улама. Свойство аномально малой затухаемости колебаний коллагена находит довольно неожиданное подтверждение в электроакустике костей. Обнаружена спонтанная генерация переменных электрических волн костной тканью даже тогда, когда она взята у мертвых животных, спустя многие часы после их смерти. Заманчиво объяснить это явление колебаниями коллагеновых фибрилл в составе костной ткани и генерацией ими полей за счет своих электретных свойств, известных для коллагена. Если это правильно, получает объяснение еще один необычный факт: пленки-подложки из коллагена, используемые как искусственный внеклеточный матрикс при выращивании на них культуры фибробластов, при укалывании иглой начинают организовывать упорядоченные движения фибробластов. Последние собираются в четкие ритмические паттерны, причины возникновения которых не ясны. И здесь можно проследить явление того же порядка, что и в случае генерирующей поля изолированной костной ткани. В обоих случаях имеют место квазиспонтанные колебания гелей коллагена, порождающие акустические и электрические поля, которые дополнительно возбуждаются уколом во втором случае. Система коллагенфибробласты in vitro будет в таком случае элементарной моделью матрично-клеточных морфогенетических отношений, когда запускаются механизмы клеточно-тканевых движений по программам волновых фронтов акустико-электромагнитных голограмм динамичной системы “клетки U внеклеточный матрикс” с жидкокристаллическими компонентами, способными помнить интерферирующие поля.
Теоретически информационная емкость голографических решеток даже в двумерном варианте при записи электромагнитных колебаний огромна, так как они несут восьмимерную информацию. Объем голографической памяти в биосистеме (помимо мозга) может быть еще большим за счет записи в трехмерной жидкокристаллической среде так называемых мультиплексных голограмм, когда меняются отношения интенсивности опорного и объектного пучков и меняются углы между ними, что логично предположить в мобильной тканевой среде организма.
Расшифровка механизмов быстрой и безинерционной передачи больших массивов волновой информации в организме позволяет по иному взглянуть на проблемы онкологии. Действительно, трудно иначе объяснить известные эксперименты по индукции опухолей имплантированными в ткань шлифованными (отражающими волны) инородными материалами. Шероховатые инородные предметы вызывают опухоли в 12% случаев по сравнению с 49% зеркальных того же состава. В этом случае переродившиеся клетки, дающие клоны опухолевых, возникают в соединительно-тканной капсуле, окружающей инородное тело, или редко за пределами капсулы, но они никогда не обнаруживаются в монослое клеток, лежащих непосредственно на инородном теле. Для естественных эндогенных электромагнитных и акустических полей организма, отражающие их инородные тела являются шумовыми помехами в передаче волновой информации по голографическим и солитонным механизмам.
Как один из путей нового понимания генома нами было начато изучение некоторых трудно интерпретируемых феноменов жизненных форм. К числу таких необычных и непонятных (“аномальных”) явлений относятся эффекты следовой памяти генетического материала, обнаруженные нами и независимо группой Роберта Пекоры (США). Сюда же относится феномен так называемого фантомного листового эффекта, подтвержденного во многих лабораториях, в том числе и нами. Такую память генома можно рассматривать как один из видов генетической полевой памяти биосистем на молекулярно-ткане-органном уровне. Она реализуется одновременно как ассоциативно-голографическая и как память последействия ДНК и дает иные версии работы хромосом, дополняющие уже известные механизмы и переводящие проблему биологического морфогенеза в иные гносеологические планы. Эта проблема нами исследована одновременно в теоретико-биологическом, физико-математическом и экспериментальном планах. В связи с этим представляется, что существует геносемиотический сектор работы хромосомного континуума, в котором происходит дуалистическое расщепление смысловых рядов ДНК на уровни вещества (реплики РНК и белков, знаковые топологии хромосом) и поля (знаковые акустика и электромагнитные излучения генома). Исходя из этого, кодирующую иерархию хромосомного аппарата эукариот можно представить следующим образом.
Вещество: хромосомная ДНК как кодирующая структура, в которой триплетный генетический код выполняет первичные простейшие гено-знаковые функции синтеза иРНК и белков (1-й уровень). Хромосомная ДНК, включающая спейсерные и интронные зоны как многомерная структура знаковых фрактальных топологических форм жидкого кристалла, частным случаем которых выступают голографические решетки полиядерного когерентного континуума генома (2-й уровень). Квази-речевые фракталы полинуклеотидных ДНК-РНК-последовательностей, более длинных чем триплеты кодонов и белковых генов и кодирующих на “словесно”-образном уровне (3-й, 4-й... n-й уровни).
Поле: отчужденные от генома в форме волновых знаковых построений “идеальные” или “смысловые” (образные) ряды, субъектом генерации и “понимания” которых выступает геном как солитонноголографический биокомпьютер с квази-речевыми атрибутами, и соответственно, квазисознанием. Назначение волновых и “речевых” команд заключается в логической квази-сознательной разметке потенциальной биосистемы, т. е. в синтезе ее полевого относительно устойчивого и вместе с тем динамичного “автопортрета” - волновой физической матрицы для правильного распределения вещества организма в его собственном пространстве-времени. В этом плане логично рассмотреть:
а) информационные отношения между системой внеклеточных матриксов, цитоскелетом, белок-синтезирующим аппаратом и хромосомами с новых позиций, учитывающих собственные экспериментальные данные об изоморфных волновых состояниях этих биоструктур;
б) вклад эндогенных физических полей в биоморфогенез;
в) роль эндогенных физических полей в эмбриогенезе биосистем с точки зрения солитоники и голографии; высказана идея изоморфно-гомоморфных отображений на уровне полевых функций генома с его способностью к солитонным возбуждениям и транспорту их по “водному” клеточно-межклеточному континууму.
В рамках проведенных математических экспериментов обнаружилась способность компьютерных математических моделей солитонов Инглендера-Салерно-Маслова на ДНК запоминать последовательности нуклеотидов, отображая их в динамике собственного поведения во времени. При этом обозначилась и очевидная обратная задача - если солитоны осуществляют “запоминание” структур ДНК в своих амплитудно-траекторных модуляциях, то естественно считать практически возможной генерацию этой информации за пределы ДНК, что коррелирует с нашими экспериментами и теорией по дистантной передаче волновых морфогенетических сигналов. В физическом и семиотическом планах это может и должно найти отображение в форме ретрансляции солитонами последовательностей нуклеотидов (на уровне крупных блоков) в адекватной читаемой, в том числе и человеком, форме.
Список использованной литературы:
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы
Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).
Чтобы скачать бесплатно Контрольные работы на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.
Важно! Все представленные Контрольные работы для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.
Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.
Если Контрольная работа, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.
Добавить отзыв могут только зарегистрированные пользователи.