Studrb.ru банк рефератов
Консультация и поддержка студентов в учёбе

Главная » Бесплатные рефераты » Бесплатные рефераты по концепции современного естествознания »

Основные уровни живого и их характеристика

Основные уровни живого и их характеристика [07.04.13]

Тема: Основные уровни живого и их характеристика

Раздел: Бесплатные рефераты по концепции современного естествознания

Тип: Контрольная работа | Размер: 127.52K | Скачано: 257 | Добавлен 07.04.13 в 00:26 | Рейтинг: +1 | Еще Контрольные работы

Вуз: Финансовый университет


Содержание

Введение

3

  1. Основные уровни живого и их характеристика

4

  1. Описание клетки как «первокирпичика» живого

7

  1. Основные положения «клеточной теории» строения живого

8

Заключение

14

Список литературы

15

 

Введение

Жизнь на Земле чрезвычайно многообразна. Она представлена ядерными и доядерными одноклеточными и многоклеточными существами.

Живое обладает молекулярной, клеточной, тканевой и иной структурностью.

Биология ХХ века углубила понимание существенных черт живого, раскрыла молекулярные основы жизни. В основе современной биологической картины мира лежит представление о том, что мир живого - это грандиозная Система высокоорганизованных систем. Любая система (и в неорганической и в органической природе) состоит из элементов (компонентов) и связей между ними (структуры), которые объединяют данную совокупность элементов в единое целое. Биологическим системам свойственны свои специфические элементы и особенные типы связей между ними.

Открытие клетки как элемента живых структур и представление о системности, цельности этих структур стали основой последующего построения иерархии живого.

В представленной контрольной работе будут рассмотрены основные уровни биологических структур, роль клетки в строении живого, а так же «клеточная теория».

 

  1. Основные уровни живого и их характеристика

1960-м гг. в биологии сложилось представление об уровнях организации живого как конкретном выражении усложняющейся упорядоченности органического мира.1 Жизнь на Земле представлена организмами своеобразного строения, принадлежащими к определенным систематическим группам (вид), а также сообществам разной сложности (биогеоценоз, биосфера). В свою очередь, организмы характеризуются органной, тканевой, клеточной и молекулярной организацией. Каждый организм, с одной стороны, состоит из специализированных подчиненных ему систем организации (органов, тканей и т. д.), с другой — сам является относительно изолированной единицей в составе надорганизменных биологических систем (видов, биогеоценозов и биосферы в целом). Уровни организации живой материи представлены на рис. 1

Уровни организации живой материи

Рис. 1 Уровни организации живой материи

Молекулярно-генетический уровень жизни - это уровень функционирования биополимеров (белков, нуклеиновых кислот, полисахаридов) и других важных органических соединений, лежащих в основе процессов жизнедеятельности организмов. Основу всех животных, растений и вирусов составляют 20 аминокислот и 4 одинаковых оснований, входящих в состав молекул нуклеиновых кислот. На этом уровне элементарной структурной единицей является ген, а носителем наследственной информации у всех живых организмов - молекула ДНК, способной к саморепродукции. Реализация наследственной информации осуществляется при участии молекул РНК.

Субклеточный уровень жизни. Сравнительно невелик (несколько десятков) основных клеточных компонентов в про- и эукариотных клетках.

Клеточный уровень. Клетка является основной самостоятельно функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уровне возможны биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. В истории жизни на нашей планете был такой период (первая половина протерозойской эры ~ 2000 млн. лет назад), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоценозы и биосфера в целом.Клетки всех организмов сходны по строению и составу веществ. Всеми сложными многоступенчатыми процессами в клетке управляет особая структура, как правило, находящаяся в ее ядре и состоящая из длинных цепей молекул нуклеиновых кислот.

Органотканевый уровень – совокупность клеток с одинаковым типом организации составляет ткань. Тканевый уровень возник вместе с появлением многоклеточных животных и растений, имеющих различающиеся между собой ткани,из тканей состоят различные органы живых организмов. У многоклеточных животных выделяют всего четыре основные ткани (эпителиальные, соединительные, нервная, мышечная), у растений их шесть (покровные, основные, механические, проводящие, выделительные, образовательные).Большое сходство между всеми организмами сохраняется на тканевом уровне.

Организменный уровень. На организменном уровне обнаруживается чрезвычайно большое многообразие форм. Разнообразие организмов, относящихся к разным видам, а также в пределах одного вида, объясняется не разнообразием дискретных единиц низшего порядка (клеток, тканей, органов), а усложнением их комбинаций, обеспечивающих качественные особенности организмов. В настоящее время на Земле обитает более миллиона видов животных и около полумиллиона видов растений. Каждый вид состоит из отдельных индивидуумов (организмы, особи), имеющих свои отличительные черты.

Популяционно-видовой уровень. Совокупность организмов одного вида, населяющих определенную территорию, составляет популяцию. Популяция – это живая система, которая является элементарной единицей эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биоценозов.Видом называется совокупность особей, сходных по строению и физиологическим свойствам, имеющих общее происхождение, могущих свободно скрещиваться и давать плодовитое потомство. Вид существует только через популяции, представляющие собой генетически открытые системы.

Биоценотический уровень. Биогеоценозы – исторически сложившиеся устойчивые сообщества популяций различных видов, связанных между собой и окружающей средой, обменом веществ, энергии и информации. Они являются элементарными системами, в которых осуществляется вещественно-энергетический круговорот, обусловленный жизнедеятельностью организмов.

Биосферный уровень. Совокупность биогеоценозов составляют биосферу и обуславливают все процессы, протекающие в ней. На этом уровне происходитглобальный круговорот веществ и превращение энергии, а так жевзаимодействие живого и неживого вещества планеты.Таким образом, биосфера является единой экологической системой. Изучение функционирования этой системы, ее строения и функций - важнейшая задача биологии. Занимаются изучением этих проблем экология, биоценология и биогеохимия.

 

  1. Описание клетки как «первокирпичика» живого

Клетка - элементарная живая система и основная форма организации живой материи: она усваивает пищу, способна существовать и расти, может разделиться на две, каждая из которых содержит генетический материал, идентичный исходной клетке. Клетка - это один из основных структурных, функциональных и воспроизводящих элементов живого. За 3 млрд. лет существования на Земле живое вещество развилось до нескольких миллионов видов, но все они - от бактерий до высших животных - состоят из клеток. Специфичность клеточного подуровня заключается в специализации клеток. В человеческом организме до 1015 клеток. Половые клетки служат для размножения, соматические (от греч. soma - тело) имеют разное строение и функции (нервные, мышечные, костные). Клетки отличаются своими размерами, формой, количеством поглощенного красителя. Среди живого есть одно- и многоклеточные организмы. Вирусы - неклеточные организмы, они размножаются в чужих клетках. Некоторые водоросли потеряли свое клеточное строение. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности во времени и пространстве, что связано с приуроченностью функций к различным субклеточным структурам.

Клетка имеет сложную структуру. Она обособляется от внешней среды оболочкой, которая, будучи неплотной и рыхлой, обеспечивает взаимодействие клетки с внешним миром, обмен с ним веществом, энергией, информацией. Обмен веществ, обеспечиваемый клетками, - важнейшее свойство всего живого. Это свойство в биологической литературе называют метаболизмом клеток.

Метаболизм в свою очередь служит основой для другого важнейшего свойства клетки - сохранения стабильности, устойчивости условий внутренней среды клетки. Это свойство  клеток, присущее всей живой системе, называют гомеостазом. Гомеостаз, т.е. постоянство состава клетки, поддерживается обменом веществ, или метаболизмом.

 

  1. Основные положения «клеточной теории» строения живого

Клеточная теория — основополагающая для биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. МаттиасШлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка происходит от другой клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом.

Положения клеточной теории Шлейдена-Шванна:

  1. Все животные и растения состоят из клеток.
  2. Растут и развиваются растения и животные путём возникновения новых клеток.
  3. Клетка является самой маленькой единицей живого, а целый организм — это совокупность клеток.

Основные положения современной клеточной теории:

  1.  - элементарная единица живого, вне клетки жизни нет.
  2.  - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.
  3. Клетки всех организмов гомологичны.
  4. Клетка происходит только путём деления материнской клетки, после удвоения её генетического материала.
  5. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.
  6. Клетки многоклеточных организмов тотипотентны.

1665 год — английский физик Р. Гук в работе «Микрография» описывает строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений.

1670-е годы — итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали в разных органах растений «мешочки, или пузырьки» и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопист А. Левенгук. Он же первым открыл мир одноклеточных организмов — описал бактерий и протистов (инфузорий).

Исследователи XVII века, показавшие распространённость «клеточного строения» растений, не оценили значение открытия клетки. Они представляли клетки в качестве пустот в непрерывной массе растительных тканей. Грю рассматривал стенки клеток как волокна, поэтому он ввёл термин «ткань», по аналогии с текстильной тканью. Исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточном строении.

В XVIII веке совершаются первые попытки сопоставления микроструктуры клеток растений и животных. К. Ф. Вольф в работе «Теории зарождения» (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфу, зародыш как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

С 1840-х годов XIX века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремаком. Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемыШлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.

Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.

Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки — с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

В 1930-х годах советский биолог О. Б. Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».5

 

Заключение

Жизнь есть форма существования сложных, открытых систем, способных к самоорганизации и самовоспроизведению. Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты.

Выделяют биосферный, биогеоценотический, популяционно-видовой, организменный, тканевый, клеточный и молекулярный уровни организации живого вещества.

Значение клеточной теории в развитии науки состоит в том, что благодаря ей стало понятно, что клетка – это важнейшая составляющая часть всех живых организмов. Она их главный «строительный» компонент, клетка является эмбриональной основой многоклеточного организма, т.к. развитие организма начинается с одной клетки – зиготы. Клетка – основа физиологических и биохимических процессов в организме, т.к. на клеточном уровне происходят, в конечном счёте, все физиологически и биохимические процессы. Клеточная теория позволила прийти к выводу о сходстве химического состава всех клеток и ещё раз подтвердила единство всего органического мира.

 

Список литературы:

1. Краснодембский Е. Г.  «Общая биология: Пособие для старшеклассников и поступающих в вузы» — СПб.: Питер, 2008. — 224 с.: ил.

2. Войткевич Г. В. «Возникновение жизни на Земле» - Ростов-на-Дону, 1996.

3. Фолсом М. К. «Происхождение жизни». – М.: 1973

4. www.wikipedia.ru

5. http://ru.wikibooks.org

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Бесплатная оценка

+1
Размер: 127.52K
Скачано: 257
Скачать бесплатно
07.04.13 в 00:26 Автор:

Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).


Чтобы скачать бесплатно Контрольные работы на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Контрольные работы для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.


Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Добавить работу


Если Контрольная работа, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.


Добавление отзыва к работе

Добавить отзыв могут только зарегистрированные пользователи.


Похожие работы

Консультация и поддержка студентов в учёбе